Cargando…

Mass spectrometry analysis of K63-ubiquitinated targets in response to oxidative stress

The data described here provide the first large-scale analysis of lysine 63 (K63)-linked polyubiquitin targets. Protein ubiquitination is a prominent post-translational modification, and a variety of ubiquitin chains exists, serving a multitude of functions [1]. The chains differ by the lysine resid...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Gustavo Monteiro, Vogel, Christine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510443/
https://www.ncbi.nlm.nih.gov/pubmed/26217776
http://dx.doi.org/10.1016/j.dib.2015.05.002
Descripción
Sumario:The data described here provide the first large-scale analysis of lysine 63 (K63)-linked polyubiquitin targets. Protein ubiquitination is a prominent post-translational modification, and a variety of ubiquitin chains exists, serving a multitude of functions [1]. The chains differ by the lysine residue by which the ubiquitin monomers are linked. We used yeast Saccharomyces cerevisiae subjected to oxidative stress as a model to study K63 ubiquitination. K63 ubiquitinated targets were pulled-down by the K63-TUBE system (Tandem Ubiquitin Binding Entities) and analyzed by SILAC-based mass spectrometry [2]. The data are associated to the research article ‘K63 polyubiquitination is a new modulator of the oxidative stress response’ [3]. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000960.