Cargando…
Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis
Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the chara...
Autores principales: | Lin, Nan, Jiang, Junhai, Guo, Shicheng, Xiong, Momiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510534/ https://www.ncbi.nlm.nih.gov/pubmed/26196383 http://dx.doi.org/10.1371/journal.pone.0132945 |
Ejemplares similares
-
Stochastic convex sparse principal component analysis
por: Baytas, Inci M., et al.
Publicado: (2016) -
Craniofacial similarity analysis through sparse principal component analysis
por: Zhao, Junli, et al.
Publicado: (2017) -
Principal component analysis networks and algorithms
por: Kong, Xiangyu, et al.
Publicado: (2017) -
Clustering of Brain Tumor Based on Analysis of MRI Images Using Robust Principal Component Analysis (ROBPCA) Algorithm
por: Hamzenejad, Ali, et al.
Publicado: (2021) -
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017)