Cargando…
Sample Selection for Training Cascade Detectors
Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this...
Autores principales: | Vállez, Noelia, Deniz, Oscar, Bueno, Gloria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510611/ https://www.ncbi.nlm.nih.gov/pubmed/26197221 http://dx.doi.org/10.1371/journal.pone.0133059 |
Ejemplares similares
-
An entropy-based automated approach to prostate biopsy ROI segmentation
por: Bueno, Gloria, et al.
Publicado: (2013) -
CADe System Integrated within the Electronic Health Record
por: Vállez, Noelia, et al.
Publicado: (2013) -
Automatic Museum Audio Guide
por: Vallez, Noelia, et al.
Publicado: (2020) -
Approaching Adversarial Example Classification with Chaos Theory
por: Pedraza, Anibal, et al.
Publicado: (2020) -
Study of discharge properties in cascaded gaseous detectors
por: Maltsev, T, et al.
Publicado: (2020)