Cargando…

An itinerant antiferromagnetic metal without magnetic constituents

The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case o...

Descripción completa

Detalles Bibliográficos
Autores principales: Svanidze, E., Wang, Jiakui K., Besara, T., Liu, L., Huang, Q., Siegrist, T., Frandsen, B., Lynn, J. W., Nevidomskyy, Andriy H., Gamża, Monika B., Aronson, M. C., Uemura, Y. J., Morosan, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510670/
https://www.ncbi.nlm.nih.gov/pubmed/26166042
http://dx.doi.org/10.1038/ncomms8701
_version_ 1782382214552485888
author Svanidze, E.
Wang, Jiakui K.
Besara, T.
Liu, L.
Huang, Q.
Siegrist, T.
Frandsen, B.
Lynn, J. W.
Nevidomskyy, Andriy H.
Gamża, Monika B.
Aronson, M. C.
Uemura, Y. J.
Morosan, E.
author_facet Svanidze, E.
Wang, Jiakui K.
Besara, T.
Liu, L.
Huang, Q.
Siegrist, T.
Frandsen, B.
Lynn, J. W.
Nevidomskyy, Andriy H.
Gamża, Monika B.
Aronson, M. C.
Uemura, Y. J.
Morosan, E.
author_sort Svanidze, E.
collection PubMed
description The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn(2) and Sc(3)In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.
format Online
Article
Text
id pubmed-4510670
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-45106702015-07-28 An itinerant antiferromagnetic metal without magnetic constituents Svanidze, E. Wang, Jiakui K. Besara, T. Liu, L. Huang, Q. Siegrist, T. Frandsen, B. Lynn, J. W. Nevidomskyy, Andriy H. Gamża, Monika B. Aronson, M. C. Uemura, Y. J. Morosan, E. Nat Commun Article The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn(2) and Sc(3)In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems. Nature Pub. Group 2015-07-13 /pmc/articles/PMC4510670/ /pubmed/26166042 http://dx.doi.org/10.1038/ncomms8701 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Svanidze, E.
Wang, Jiakui K.
Besara, T.
Liu, L.
Huang, Q.
Siegrist, T.
Frandsen, B.
Lynn, J. W.
Nevidomskyy, Andriy H.
Gamża, Monika B.
Aronson, M. C.
Uemura, Y. J.
Morosan, E.
An itinerant antiferromagnetic metal without magnetic constituents
title An itinerant antiferromagnetic metal without magnetic constituents
title_full An itinerant antiferromagnetic metal without magnetic constituents
title_fullStr An itinerant antiferromagnetic metal without magnetic constituents
title_full_unstemmed An itinerant antiferromagnetic metal without magnetic constituents
title_short An itinerant antiferromagnetic metal without magnetic constituents
title_sort itinerant antiferromagnetic metal without magnetic constituents
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510670/
https://www.ncbi.nlm.nih.gov/pubmed/26166042
http://dx.doi.org/10.1038/ncomms8701
work_keys_str_mv AT svanidzee anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT wangjiakuik anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT besarat anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT liul anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT huangq anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT siegristt anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT frandsenb anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT lynnjw anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT nevidomskyyandriyh anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT gamzamonikab anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT aronsonmc anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT uemurayj anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT morosane anitinerantantiferromagneticmetalwithoutmagneticconstituents
AT svanidzee itinerantantiferromagneticmetalwithoutmagneticconstituents
AT wangjiakuik itinerantantiferromagneticmetalwithoutmagneticconstituents
AT besarat itinerantantiferromagneticmetalwithoutmagneticconstituents
AT liul itinerantantiferromagneticmetalwithoutmagneticconstituents
AT huangq itinerantantiferromagneticmetalwithoutmagneticconstituents
AT siegristt itinerantantiferromagneticmetalwithoutmagneticconstituents
AT frandsenb itinerantantiferromagneticmetalwithoutmagneticconstituents
AT lynnjw itinerantantiferromagneticmetalwithoutmagneticconstituents
AT nevidomskyyandriyh itinerantantiferromagneticmetalwithoutmagneticconstituents
AT gamzamonikab itinerantantiferromagneticmetalwithoutmagneticconstituents
AT aronsonmc itinerantantiferromagneticmetalwithoutmagneticconstituents
AT uemurayj itinerantantiferromagneticmetalwithoutmagneticconstituents
AT morosane itinerantantiferromagneticmetalwithoutmagneticconstituents