Cargando…
An itinerant antiferromagnetic metal without magnetic constituents
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case o...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510670/ https://www.ncbi.nlm.nih.gov/pubmed/26166042 http://dx.doi.org/10.1038/ncomms8701 |
_version_ | 1782382214552485888 |
---|---|
author | Svanidze, E. Wang, Jiakui K. Besara, T. Liu, L. Huang, Q. Siegrist, T. Frandsen, B. Lynn, J. W. Nevidomskyy, Andriy H. Gamża, Monika B. Aronson, M. C. Uemura, Y. J. Morosan, E. |
author_facet | Svanidze, E. Wang, Jiakui K. Besara, T. Liu, L. Huang, Q. Siegrist, T. Frandsen, B. Lynn, J. W. Nevidomskyy, Andriy H. Gamża, Monika B. Aronson, M. C. Uemura, Y. J. Morosan, E. |
author_sort | Svanidze, E. |
collection | PubMed |
description | The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn(2) and Sc(3)In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems. |
format | Online Article Text |
id | pubmed-4510670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45106702015-07-28 An itinerant antiferromagnetic metal without magnetic constituents Svanidze, E. Wang, Jiakui K. Besara, T. Liu, L. Huang, Q. Siegrist, T. Frandsen, B. Lynn, J. W. Nevidomskyy, Andriy H. Gamża, Monika B. Aronson, M. C. Uemura, Y. J. Morosan, E. Nat Commun Article The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn(2) and Sc(3)In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems. Nature Pub. Group 2015-07-13 /pmc/articles/PMC4510670/ /pubmed/26166042 http://dx.doi.org/10.1038/ncomms8701 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Svanidze, E. Wang, Jiakui K. Besara, T. Liu, L. Huang, Q. Siegrist, T. Frandsen, B. Lynn, J. W. Nevidomskyy, Andriy H. Gamża, Monika B. Aronson, M. C. Uemura, Y. J. Morosan, E. An itinerant antiferromagnetic metal without magnetic constituents |
title | An itinerant antiferromagnetic metal without magnetic constituents |
title_full | An itinerant antiferromagnetic metal without magnetic constituents |
title_fullStr | An itinerant antiferromagnetic metal without magnetic constituents |
title_full_unstemmed | An itinerant antiferromagnetic metal without magnetic constituents |
title_short | An itinerant antiferromagnetic metal without magnetic constituents |
title_sort | itinerant antiferromagnetic metal without magnetic constituents |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510670/ https://www.ncbi.nlm.nih.gov/pubmed/26166042 http://dx.doi.org/10.1038/ncomms8701 |
work_keys_str_mv | AT svanidzee anitinerantantiferromagneticmetalwithoutmagneticconstituents AT wangjiakuik anitinerantantiferromagneticmetalwithoutmagneticconstituents AT besarat anitinerantantiferromagneticmetalwithoutmagneticconstituents AT liul anitinerantantiferromagneticmetalwithoutmagneticconstituents AT huangq anitinerantantiferromagneticmetalwithoutmagneticconstituents AT siegristt anitinerantantiferromagneticmetalwithoutmagneticconstituents AT frandsenb anitinerantantiferromagneticmetalwithoutmagneticconstituents AT lynnjw anitinerantantiferromagneticmetalwithoutmagneticconstituents AT nevidomskyyandriyh anitinerantantiferromagneticmetalwithoutmagneticconstituents AT gamzamonikab anitinerantantiferromagneticmetalwithoutmagneticconstituents AT aronsonmc anitinerantantiferromagneticmetalwithoutmagneticconstituents AT uemurayj anitinerantantiferromagneticmetalwithoutmagneticconstituents AT morosane anitinerantantiferromagneticmetalwithoutmagneticconstituents AT svanidzee itinerantantiferromagneticmetalwithoutmagneticconstituents AT wangjiakuik itinerantantiferromagneticmetalwithoutmagneticconstituents AT besarat itinerantantiferromagneticmetalwithoutmagneticconstituents AT liul itinerantantiferromagneticmetalwithoutmagneticconstituents AT huangq itinerantantiferromagneticmetalwithoutmagneticconstituents AT siegristt itinerantantiferromagneticmetalwithoutmagneticconstituents AT frandsenb itinerantantiferromagneticmetalwithoutmagneticconstituents AT lynnjw itinerantantiferromagneticmetalwithoutmagneticconstituents AT nevidomskyyandriyh itinerantantiferromagneticmetalwithoutmagneticconstituents AT gamzamonikab itinerantantiferromagneticmetalwithoutmagneticconstituents AT aronsonmc itinerantantiferromagneticmetalwithoutmagneticconstituents AT uemurayj itinerantantiferromagneticmetalwithoutmagneticconstituents AT morosane itinerantantiferromagneticmetalwithoutmagneticconstituents |