Cargando…

Associations of total and abdominal adiposity with risk marker patterns in children at high-risk for cardiovascular disease

BACKGROUND: While body mass index percentiles (BMI%) are commonly used to assess childhood cardiovascular risk, waist circumference percentiles (WC%) are not commonly used nor universally accepted. We tested whether BMI% or WC% should be used to identify risk factor patterns in children at high-risk...

Descripción completa

Detalles Bibliográficos
Autores principales: de Koning, Lawrence, Denhoff, Erica, Kellogg, Mark D, de Ferranti, Sarah D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511024/
https://www.ncbi.nlm.nih.gov/pubmed/26217530
http://dx.doi.org/10.1186/s40608-015-0043-7
Descripción
Sumario:BACKGROUND: While body mass index percentiles (BMI%) are commonly used to assess childhood cardiovascular risk, waist circumference percentiles (WC%) are not commonly used nor universally accepted. We tested whether BMI% or WC% should be used to identify risk factor patterns in children at high-risk for developing cardiovascular disease (CVD). A total of 107 children (8–19 years) with cardiovascular risk factors or a family history of CVD were studied. Tobacco exposure, screen-time, blood pressure and anthropometric measures were made, as well as serum risk markers. Principal component analysis (PCA) was used to identify patterns explaining risk factor variance. Multiple linear regression was used to test for associations between risk factor patterns, BMI% and WC%. RESULTS: An adverse lipid pattern (low HDL, high triglycerides and LDL), a pro-inflammatory pattern (high ICAM and TNFαR2), a high blood pressure pattern (high SBP and DBP) and a high Lp(a) pattern were identified. Higher BMI% and WC% were associated with significantly higher levels of the lipid pattern (p < 0.05). BMI% explained 20% of variance in this pattern, whereas WC% explained 22%. When both BMI% and WC% were used together, neither BMI% nor WC% were significantly associated with the lipid pattern. However, BMI% was significantly associated with lower levels of the pro-inflammatory pattern, and WC% was associated higher levels of the pro-inflammatory pattern - together explaining 12% of variance. CONCLUSION: In children at high-risk for CVD, BMI% or WC% explained similar variance in an adverse lipid pattern; however, the combination of BMI% and WC% explained greater variance in a pro-inflammatory pattern than either alone. Both WC% and BMI% should both be used in anthropometric assessments of high-risk children.