Cargando…
Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
BACKGROUND: Most ‘transcriptomic’ data from microarrays are generated from small sample sizes compared to the large number of measured biomarkers, making it very difficult to build accurate and generalizable disease state classification models. Integrating information from different, but related, ‘t...
Autores principales: | Ogoe, Henry A., Visweswaran, Shyam, Lu, Xinghua, Gopalakrishnan, Vanathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512094/ https://www.ncbi.nlm.nih.gov/pubmed/26202217 http://dx.doi.org/10.1186/s12859-015-0643-8 |
Ejemplares similares
-
Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure
por: Lustgarten, Jonathan Lyle, et al.
Publicado: (2017) -
Knowledge-based variable selection for learning rules from proteomic data
por: Lustgarten, Jonathan L, et al.
Publicado: (2009) -
On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor-adjacent histologically-normal tissue
por: Pineda, Arturo López, et al.
Publicado: (2016) -
Selective Model Averaging with Bayesian Rule Learning for Predictive Biomedicine
por: Balasubramanian, Jeya B., et al.
Publicado: (2014) -
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
por: Balasubramanian, Jeya Balaji, et al.
Publicado: (2018)