Cargando…

Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis

Proinsulin misfolding in the endoplasmic reticulum (ER) initiates a cell death response, although the mechanism(s) remains unknown. To provide insight into how protein misfolding may cause β-cell failure, we analyzed mice with the deletion of P58(IPK)/DnajC3, an ER luminal co-chaperone. P58(IPK−/−)...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Jaeseok, Song, Benbo, Kim, Jiun, Kodali, Vamsi K., Pottekat, Anita, Wang, Miao, Hassler, Justin, Wang, Shiyu, Pennathur, Subramaniam, Back, Sung Hoon, Katze, Michael G., Kaufman, Randal J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512214/
https://www.ncbi.nlm.nih.gov/pubmed/25795214
http://dx.doi.org/10.2337/db14-1357
_version_ 1782382461768957952
author Han, Jaeseok
Song, Benbo
Kim, Jiun
Kodali, Vamsi K.
Pottekat, Anita
Wang, Miao
Hassler, Justin
Wang, Shiyu
Pennathur, Subramaniam
Back, Sung Hoon
Katze, Michael G.
Kaufman, Randal J.
author_facet Han, Jaeseok
Song, Benbo
Kim, Jiun
Kodali, Vamsi K.
Pottekat, Anita
Wang, Miao
Hassler, Justin
Wang, Shiyu
Pennathur, Subramaniam
Back, Sung Hoon
Katze, Michael G.
Kaufman, Randal J.
author_sort Han, Jaeseok
collection PubMed
description Proinsulin misfolding in the endoplasmic reticulum (ER) initiates a cell death response, although the mechanism(s) remains unknown. To provide insight into how protein misfolding may cause β-cell failure, we analyzed mice with the deletion of P58(IPK)/DnajC3, an ER luminal co-chaperone. P58(IPK−/−) mice become diabetic as a result of decreased β-cell function and mass accompanied by induction of oxidative stress and cell death. Treatment with a chemical chaperone, as well as deletion of Chop, improved β-cell function and ameliorated the diabetic phenotype in P58(IPK−/−) mice, suggesting P58(IPK) deletion causes β-cell death through ER stress. Significantly, a diet of chow supplemented with antioxidant dramatically and rapidly restored β-cell function in P58(IPK−/−) mice and corrected abnormal localization of MafA, a critical transcription factor for β-cell function. Antioxidant feeding also preserved β-cell function in Akita mice that express mutant misfolded proinsulin. Therefore defective protein folding in the β-cell causes oxidative stress as an essential proximal signal required for apoptosis in response to ER stress. Remarkably, these findings demonstrate that antioxidant feeding restores cell function upon deletion of an ER molecular chaperone. Therefore antioxidant or chemical chaperone treatment may be a promising therapeutic approach for type 2 diabetes.
format Online
Article
Text
id pubmed-4512214
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-45122142016-08-01 Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis Han, Jaeseok Song, Benbo Kim, Jiun Kodali, Vamsi K. Pottekat, Anita Wang, Miao Hassler, Justin Wang, Shiyu Pennathur, Subramaniam Back, Sung Hoon Katze, Michael G. Kaufman, Randal J. Diabetes Islet Studies Proinsulin misfolding in the endoplasmic reticulum (ER) initiates a cell death response, although the mechanism(s) remains unknown. To provide insight into how protein misfolding may cause β-cell failure, we analyzed mice with the deletion of P58(IPK)/DnajC3, an ER luminal co-chaperone. P58(IPK−/−) mice become diabetic as a result of decreased β-cell function and mass accompanied by induction of oxidative stress and cell death. Treatment with a chemical chaperone, as well as deletion of Chop, improved β-cell function and ameliorated the diabetic phenotype in P58(IPK−/−) mice, suggesting P58(IPK) deletion causes β-cell death through ER stress. Significantly, a diet of chow supplemented with antioxidant dramatically and rapidly restored β-cell function in P58(IPK−/−) mice and corrected abnormal localization of MafA, a critical transcription factor for β-cell function. Antioxidant feeding also preserved β-cell function in Akita mice that express mutant misfolded proinsulin. Therefore defective protein folding in the β-cell causes oxidative stress as an essential proximal signal required for apoptosis in response to ER stress. Remarkably, these findings demonstrate that antioxidant feeding restores cell function upon deletion of an ER molecular chaperone. Therefore antioxidant or chemical chaperone treatment may be a promising therapeutic approach for type 2 diabetes. American Diabetes Association 2015-08 2015-03-20 /pmc/articles/PMC4512214/ /pubmed/25795214 http://dx.doi.org/10.2337/db14-1357 Text en © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
spellingShingle Islet Studies
Han, Jaeseok
Song, Benbo
Kim, Jiun
Kodali, Vamsi K.
Pottekat, Anita
Wang, Miao
Hassler, Justin
Wang, Shiyu
Pennathur, Subramaniam
Back, Sung Hoon
Katze, Michael G.
Kaufman, Randal J.
Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis
title Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis
title_full Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis
title_fullStr Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis
title_full_unstemmed Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis
title_short Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis
title_sort antioxidants complement the requirement for protein chaperone function to maintain β-cell function and glucose homeostasis
topic Islet Studies
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512214/
https://www.ncbi.nlm.nih.gov/pubmed/25795214
http://dx.doi.org/10.2337/db14-1357
work_keys_str_mv AT hanjaeseok antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT songbenbo antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT kimjiun antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT kodalivamsik antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT pottekatanita antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT wangmiao antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT hasslerjustin antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT wangshiyu antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT pennathursubramaniam antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT backsunghoon antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT katzemichaelg antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis
AT kaufmanrandalj antioxidantscomplementtherequirementforproteinchaperonefunctiontomaintainbcellfunctionandglucosehomeostasis