Cargando…
Large-scale epigenome imputation improves data quality and disease variant enrichment
With hundreds of epigenomic maps, the opportunity arises to exploit the correlated nature of epigenetic signals, across both marks and samples, for large-scale prediction of additional datasets. Here, we undertake epigenome imputation by leveraging such correlations through an ensemble of regression...
Autores principales: | Ernst, Jason, Kellis, Manolis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512306/ https://www.ncbi.nlm.nih.gov/pubmed/25690853 http://dx.doi.org/10.1038/nbt.3157 |
Ejemplares similares
-
Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases
por: Li, Yue, et al.
Publicado: (2016) -
The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles
por: Schreiber, Jacob, et al.
Publicado: (2023) -
Enrichment of colorectal cancer associations in functional regions: Insight for using epigenomics data in the analysis of whole genome sequence-imputed GWAS data
por: Bien, Stephanie A., et al.
Publicado: (2017) -
Regulatory genomic circuitry of human disease loci by integrative epigenomics
por: Boix, Carles A., et al.
Publicado: (2021) -
Systematic chromatin state comparison of epigenomes associated with diverse properties including sex and tissue type
por: Yen, Angela, et al.
Publicado: (2015)