Cargando…

Construction and Operation of a Ventilated Hood System for Measuring Greenhouse Gas and Volatile Organic Compound Emissions from Cattle

SIMPLE SUMMARY: We describe the construction and operation of a unique system for measuring gaseous emissions that arise from the rumen and metabolism of cattle. This system allows for the collection of high quality data that can be used to improve emission inventories at the regional and national l...

Descripción completa

Detalles Bibliográficos
Autores principales: Place, Sara E., Pan, Yuee, Zhao, Yongjing, Mitloehner, Frank M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513474/
https://www.ncbi.nlm.nih.gov/pubmed/26486626
http://dx.doi.org/10.3390/ani1040433
Descripción
Sumario:SIMPLE SUMMARY: We describe the construction and operation of a unique system for measuring gaseous emissions that arise from the rumen and metabolism of cattle. This system allows for the collection of high quality data that can be used to improve emission inventories at the regional and national level. Additionally, the system can be used to test various emission mitigation techniques. ABSTRACT: Recent interest in greenhouse gas emissions from ruminants, such as cattle, has spawned a need for affordable, precise, and accurate methods for the measurement of gaseous emissions arising from enteric fermentation. A new head hood system for cattle designed to capture and quantify emissions was recently developed at the University of California, Davis. The system consists of two head hoods, two vacuum pumps, and an instrumentation cabinet housing the required data collection equipment. This system has the capability of measuring carbon dioxide, methane, ethanol, methanol, water vapor, nitrous oxide, acetic acid emissions and oxygen consumption in real-time. A unique aspect of the hoods is the front, back, and sides are made of clear polycarbonate sheeting allowing the cattle a full range of vision during gas sampling. Recovery rates for these slightly negative pressure chambers were measured ranging from 97.6 to 99.3 percent. This system can capture high quality data for use in improving emission inventories and evaluating gaseous emission mitigation strategies.