Cargando…
Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration
BACKGROUND: It is well established that macrophage infiltration is involved in concanavalin A (conA)-induced liver injury. However, the role of macrophages in conA-induced renal injury remains unknown. The aims of this study were to investigate macrophage infiltration in conA-induced renal injury an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513624/ https://www.ncbi.nlm.nih.gov/pubmed/26204936 http://dx.doi.org/10.1186/s13000-015-0347-4 |
_version_ | 1782382673734402048 |
---|---|
author | Liu, Cheng Cheng, Zhuoan Wang, Yunman Dai, Xiuqin Zhang, Jie Xue, Dongying |
author_facet | Liu, Cheng Cheng, Zhuoan Wang, Yunman Dai, Xiuqin Zhang, Jie Xue, Dongying |
author_sort | Liu, Cheng |
collection | PubMed |
description | BACKGROUND: It is well established that macrophage infiltration is involved in concanavalin A (conA)-induced liver injury. However, the role of macrophages in conA-induced renal injury remains unknown. The aims of this study were to investigate macrophage infiltration in conA-induced renal injury and determine whether paeoniflorin (PF) could inhibit macrophage infiltration into the kidney. METHODS: BALB/C mice were pre-treated with or without PF 2 h (h) before conA injection. At 8 h after con A injection, all the mice were sacrificed; The liver and kidney histology were studied. The renal CD68 expression was detected by immunohistochemical and real-time PCR analysis. The level of expression of C-X-C chemokine receptor type 3 (CXCR3) was analyzed by western blot, immunohistochemical and real-time PCR. The pathophysiological involvement of CXCR3 in macrophage infiltration were investigated using dual-colour immunofluorescence microscopy. RESULTS: PF administration significantly reduced the elevated serum levels of alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine (Cr) and the severity of liver and renal damage compared with that in the conA-vehicle group. PF administration inhibited the increase in renal IL1β mRNA expression and concentration. Furthermore, immunohistochemical analysis showed that macrophages secreted CXCR3 in the kidneys of the conA-vehicle mice. Immunofluorescence microscopy demonstrated CXCR3 bound tightly to C-X-C motif ligand 11 (CXCL11) in the kidneys of the conA-vehicle mice and showed that PF treatment could suppress CXCR3/CXCL11 over-activation. CONCLUSIONS: Macrophage infiltration was a notable pathological change in the kidneys of conA-treated mice. PF administration attenuated conA-induced renal damage, at least in part, by inhibiting the over-activated CXCR3/CXCL11 signal axis. |
format | Online Article Text |
id | pubmed-4513624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45136242015-07-25 Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration Liu, Cheng Cheng, Zhuoan Wang, Yunman Dai, Xiuqin Zhang, Jie Xue, Dongying Diagn Pathol Research BACKGROUND: It is well established that macrophage infiltration is involved in concanavalin A (conA)-induced liver injury. However, the role of macrophages in conA-induced renal injury remains unknown. The aims of this study were to investigate macrophage infiltration in conA-induced renal injury and determine whether paeoniflorin (PF) could inhibit macrophage infiltration into the kidney. METHODS: BALB/C mice were pre-treated with or without PF 2 h (h) before conA injection. At 8 h after con A injection, all the mice were sacrificed; The liver and kidney histology were studied. The renal CD68 expression was detected by immunohistochemical and real-time PCR analysis. The level of expression of C-X-C chemokine receptor type 3 (CXCR3) was analyzed by western blot, immunohistochemical and real-time PCR. The pathophysiological involvement of CXCR3 in macrophage infiltration were investigated using dual-colour immunofluorescence microscopy. RESULTS: PF administration significantly reduced the elevated serum levels of alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine (Cr) and the severity of liver and renal damage compared with that in the conA-vehicle group. PF administration inhibited the increase in renal IL1β mRNA expression and concentration. Furthermore, immunohistochemical analysis showed that macrophages secreted CXCR3 in the kidneys of the conA-vehicle mice. Immunofluorescence microscopy demonstrated CXCR3 bound tightly to C-X-C motif ligand 11 (CXCL11) in the kidneys of the conA-vehicle mice and showed that PF treatment could suppress CXCR3/CXCL11 over-activation. CONCLUSIONS: Macrophage infiltration was a notable pathological change in the kidneys of conA-treated mice. PF administration attenuated conA-induced renal damage, at least in part, by inhibiting the over-activated CXCR3/CXCL11 signal axis. BioMed Central 2015-07-25 /pmc/articles/PMC4513624/ /pubmed/26204936 http://dx.doi.org/10.1186/s13000-015-0347-4 Text en © Liu et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Liu, Cheng Cheng, Zhuoan Wang, Yunman Dai, Xiuqin Zhang, Jie Xue, Dongying Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration |
title | Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration |
title_full | Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration |
title_fullStr | Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration |
title_full_unstemmed | Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration |
title_short | Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration |
title_sort | paeoniflorin exerts a nephroprotective effect on concanavalin a-induced damage through inhibition of macrophage infiltration |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513624/ https://www.ncbi.nlm.nih.gov/pubmed/26204936 http://dx.doi.org/10.1186/s13000-015-0347-4 |
work_keys_str_mv | AT liucheng paeoniflorinexertsanephroprotectiveeffectonconcanavalinainduceddamagethroughinhibitionofmacrophageinfiltration AT chengzhuoan paeoniflorinexertsanephroprotectiveeffectonconcanavalinainduceddamagethroughinhibitionofmacrophageinfiltration AT wangyunman paeoniflorinexertsanephroprotectiveeffectonconcanavalinainduceddamagethroughinhibitionofmacrophageinfiltration AT daixiuqin paeoniflorinexertsanephroprotectiveeffectonconcanavalinainduceddamagethroughinhibitionofmacrophageinfiltration AT zhangjie paeoniflorinexertsanephroprotectiveeffectonconcanavalinainduceddamagethroughinhibitionofmacrophageinfiltration AT xuedongying paeoniflorinexertsanephroprotectiveeffectonconcanavalinainduceddamagethroughinhibitionofmacrophageinfiltration |