Cargando…
Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT)
Eight elastomeric composites (NRU, GR1–GR4, NRBG08–NRBG24) containing mixtures of different proportions of heavy metal additives (Bi, W, Gd and Sb) have been synthesized and examined as protective shields. The NRU sample was a pure rubber matrix and served as a reference sample for heavy metal modif...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513903/ https://www.ncbi.nlm.nih.gov/pubmed/26224969 http://dx.doi.org/10.1007/s10967-014-2985-5 |
_version_ | 1782382720300613632 |
---|---|
author | Szajerski, Piotr Zaborski, Marian Bem, Henryk Baryn, Wlodzimierz Kusiak, Edyta |
author_facet | Szajerski, Piotr Zaborski, Marian Bem, Henryk Baryn, Wlodzimierz Kusiak, Edyta |
author_sort | Szajerski, Piotr |
collection | PubMed |
description | Eight elastomeric composites (NRU, GR1–GR4, NRBG08–NRBG24) containing mixtures of different proportions of heavy metal additives (Bi, W, Gd and Sb) have been synthesized and examined as protective shields. The NRU sample was a pure rubber matrix and served as a reference sample for heavy metal modified composites. Experimental procedure used for evaluation of the composite shields and their attenuation properties was based on the utilization of HPGe spectrometry and analysis of X-ray fluorescence radiation intensity of the heavy metal additives in the following energy ranges for: Sb (20–35 keV), Gd (35–55 keV), W (55–70 keV) and Bi (70–90 keV). The main contributor to the induced X-ray fluorescence radiation within the shield is Bi additive and the intensity of the X-ray radiation generated within the energy range of 70–90 keV strongly depends on its concentration. It was found that decreasing concentration of the Bi fraction from 0.35 (GR samples) to 0.15 (NRBG samples) results in significant lowering Bi X-ray fluorescence radiation within the 70–90 keV energy range. Secondary effect of decreasing Bi concentration was efficient diminishing excitation processes for lower Z heavy metal additives (W, Gd and Sb, GR vs. NRBG samples). As the final quality parameter of the shielding properties for the examined elastomers, dose reduction factor (DRF) coefficients were calculated for each shield. It was found, that the best shielding properties are observed for composites with lower Bi concentration (0.15 vs. 0.35 Bi mass fraction) with only slight further improvement of their parameters (DRF) with increasing of Gd concentration (Gd mass fraction 0.08, 0.16 and 0.24). The most efficient dose reduction composite was found to be NRBG24 elastomer with DRF value 0.47 (53 % dose reduction) for ca. 2 mm and 0.44 g/cm(2) layer thickness. |
format | Online Article Text |
id | pubmed-4513903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-45139032015-07-27 Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT) Szajerski, Piotr Zaborski, Marian Bem, Henryk Baryn, Wlodzimierz Kusiak, Edyta J Radioanal Nucl Chem Article Eight elastomeric composites (NRU, GR1–GR4, NRBG08–NRBG24) containing mixtures of different proportions of heavy metal additives (Bi, W, Gd and Sb) have been synthesized and examined as protective shields. The NRU sample was a pure rubber matrix and served as a reference sample for heavy metal modified composites. Experimental procedure used for evaluation of the composite shields and their attenuation properties was based on the utilization of HPGe spectrometry and analysis of X-ray fluorescence radiation intensity of the heavy metal additives in the following energy ranges for: Sb (20–35 keV), Gd (35–55 keV), W (55–70 keV) and Bi (70–90 keV). The main contributor to the induced X-ray fluorescence radiation within the shield is Bi additive and the intensity of the X-ray radiation generated within the energy range of 70–90 keV strongly depends on its concentration. It was found that decreasing concentration of the Bi fraction from 0.35 (GR samples) to 0.15 (NRBG samples) results in significant lowering Bi X-ray fluorescence radiation within the 70–90 keV energy range. Secondary effect of decreasing Bi concentration was efficient diminishing excitation processes for lower Z heavy metal additives (W, Gd and Sb, GR vs. NRBG samples). As the final quality parameter of the shielding properties for the examined elastomers, dose reduction factor (DRF) coefficients were calculated for each shield. It was found, that the best shielding properties are observed for composites with lower Bi concentration (0.15 vs. 0.35 Bi mass fraction) with only slight further improvement of their parameters (DRF) with increasing of Gd concentration (Gd mass fraction 0.08, 0.16 and 0.24). The most efficient dose reduction composite was found to be NRBG24 elastomer with DRF value 0.47 (53 % dose reduction) for ca. 2 mm and 0.44 g/cm(2) layer thickness. Springer Netherlands 2014-01-31 2014 /pmc/articles/PMC4513903/ /pubmed/26224969 http://dx.doi.org/10.1007/s10967-014-2985-5 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/2.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Szajerski, Piotr Zaborski, Marian Bem, Henryk Baryn, Wlodzimierz Kusiak, Edyta Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT) |
title | Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT) |
title_full | Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT) |
title_fullStr | Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT) |
title_full_unstemmed | Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT) |
title_short | Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT) |
title_sort | optimization of the heavy metal (bi–w–gd–sb) concentrations in the elastomeric shields for computer tomography (ct) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513903/ https://www.ncbi.nlm.nih.gov/pubmed/26224969 http://dx.doi.org/10.1007/s10967-014-2985-5 |
work_keys_str_mv | AT szajerskipiotr optimizationoftheheavymetalbiwgdsbconcentrationsintheelastomericshieldsforcomputertomographyct AT zaborskimarian optimizationoftheheavymetalbiwgdsbconcentrationsintheelastomericshieldsforcomputertomographyct AT bemhenryk optimizationoftheheavymetalbiwgdsbconcentrationsintheelastomericshieldsforcomputertomographyct AT barynwlodzimierz optimizationoftheheavymetalbiwgdsbconcentrationsintheelastomericshieldsforcomputertomographyct AT kusiakedyta optimizationoftheheavymetalbiwgdsbconcentrationsintheelastomericshieldsforcomputertomographyct |