Cargando…

Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds

BACKGROUND: Medicinal plants are a validated source for discovery of new leads and standardized herbal medicines. The aim of this study was to assess the activity of Vernoniaamygdalina leaf extracts and isolated compounds against gametocytes and sporogonic stages of Plasmodiumberghei and to validate...

Descripción completa

Detalles Bibliográficos
Autores principales: Abay, Solomon M, Lucantoni, Leonardo, Dahiya, Nisha, Dori, Geme, Dembo, Edson G, Esposito, Fulvio, Lupidi, Guilio, Ogboi, Sonny, Ouédraogo, Robert K, Sinisi, Annamaria, Taglialatela-Scafati, Orazio, Yerbanga, R Serge, Bramucci, Massimo, Quassinti, Luana, Ouédraogo, Jean Bosco, Christophides, George, Habluetzel, Annette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513948/
https://www.ncbi.nlm.nih.gov/pubmed/26208861
http://dx.doi.org/10.1186/s12936-015-0812-2
Descripción
Sumario:BACKGROUND: Medicinal plants are a validated source for discovery of new leads and standardized herbal medicines. The aim of this study was to assess the activity of Vernoniaamygdalina leaf extracts and isolated compounds against gametocytes and sporogonic stages of Plasmodiumberghei and to validate the findings on field isolates of Plasmodium falciparum. METHODS: Aqueous (Ver-H(2)O) and ethanolic (Ver-EtOH) leaf extracts were tested in vivo for activity against sexual and asexual blood stage P. berghei parasites. In vivo transmission blocking effects of Ver-EtOH and Ver-H(2)O were estimated by assessing P. berghei oocyst prevalence and density in Anopheles stephensi mosquitoes. Activity targeting early sporogonic stages (ESS), namely gametes, zygotes and ookinetes was assessed in vitro using P. berghei CTRP(p).GFP strain. Bioassay guided fractionation was performed to characterize V.amygdalina fractions and molecules for anti-ESS activity. Fractions active against ESS of the murine parasite were tested for ex vivo transmission blocking activity on P.falciparum field isolates. Cytotoxic effects of extracts and isolated compounds vernolide and vernodalol were evaluated on the human cell lines HCT116 and EA.hy926. RESULTS: Ver-H(2)O reduced the P. berghei macrogametocyte density in mice by about 50% and Ver-EtOH reduced P. berghei oocyst prevalence and density by 27 and 90%, respectively, in An.stephensi mosquitoes. Ver-EtOH inhibited almost completely (>90%) ESS development in vitro at 50 μg/mL. At this concentration, four fractions obtained from the ethylacetate phase of the methanol extract displayed inhibitory activity >90% against ESS. Three tested fractions were also found active against field isolates of the human parasite P. falciparum, reducing oocyst prevalence in Anopheles coluzzii mosquitoes to one-half and oocyst density to one-fourth of controls. The molecules and fractions displayed considerable cytotoxicity on the two tested cell-lines. CONCLUSIONS: Vernonia amygdalina leaves contain molecules affecting multiple stages of Plasmodium, evidencing its potential for drug discovery. Chemical modification of the identified hit molecules, in particular vernodalol, could generate a library of druggable sesquiterpene lactones. The development of a multistage phytomedicine designed as preventive treatment to complement existing malaria control tools appears a challenging but feasible goal. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-015-0812-2) contains supplementary material, which is available to authorized users.