Cargando…

Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations

[Image: see text] Mycobacterium tuberculosis pyrazinamidase (PZAse) is a key enzyme to activate the pro-drug pyrazinamide (PZA). PZAse is a metalloenzyme that coordinates in vitro different divalent metal cofactors in the metal coordination site (MCS). Several metals including Co(2+), Mn(2+), and Zn...

Descripción completa

Detalles Bibliográficos
Autores principales: Salazar-Salinas, Karim, Baldera-Aguayo, Pedro A., Encomendero-Risco, Jimy J., Orihuela, Melvin, Sheen, Patricia, Seminario, Jorge M., Zimic, Mirko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514207/
https://www.ncbi.nlm.nih.gov/pubmed/25055049
http://dx.doi.org/10.1021/jp504096d
_version_ 1782382748196929536
author Salazar-Salinas, Karim
Baldera-Aguayo, Pedro A.
Encomendero-Risco, Jimy J.
Orihuela, Melvin
Sheen, Patricia
Seminario, Jorge M.
Zimic, Mirko
author_facet Salazar-Salinas, Karim
Baldera-Aguayo, Pedro A.
Encomendero-Risco, Jimy J.
Orihuela, Melvin
Sheen, Patricia
Seminario, Jorge M.
Zimic, Mirko
author_sort Salazar-Salinas, Karim
collection PubMed
description [Image: see text] Mycobacterium tuberculosis pyrazinamidase (PZAse) is a key enzyme to activate the pro-drug pyrazinamide (PZA). PZAse is a metalloenzyme that coordinates in vitro different divalent metal cofactors in the metal coordination site (MCS). Several metals including Co(2+), Mn(2+), and Zn(2+) are able to reactivate the metal-depleted PZAse in vitro. We use quantum mechanical calculations to investigate the Zn(2+), Fe(2+), and Mn(2+) metal cofactor effects on the local MCS structure, metal–ligand or metal–residue binding energy, and charge distribution. Results suggest that the major metal-dependent changes occur in the metal–ligand binding energy and charge distribution. Zn(2+) shows the highest binding energy to the ligands (residues). In addition, Zn(2+) and Mn(2+) within the PZAse MCS highly polarize the O–H bond of coordinated water molecules in comparison with Fe(2+). This suggests that the coordination of Zn(2+) or Mn(2+) to the PZAse protein facilitates the deprotonation of coordinated water to generate a nucleophile for catalysis as in carboxypeptidase A. Because metal ion binding is relevant to enzymatic reaction, identification of the metal binding event is important. The infrared vibrational mode shift of the C=Nε (His) bond from the M. tuberculosis MCS is the best IR probe to metal complexation.
format Online
Article
Text
id pubmed-4514207
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-45142072015-08-01 Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations Salazar-Salinas, Karim Baldera-Aguayo, Pedro A. Encomendero-Risco, Jimy J. Orihuela, Melvin Sheen, Patricia Seminario, Jorge M. Zimic, Mirko J Phys Chem B [Image: see text] Mycobacterium tuberculosis pyrazinamidase (PZAse) is a key enzyme to activate the pro-drug pyrazinamide (PZA). PZAse is a metalloenzyme that coordinates in vitro different divalent metal cofactors in the metal coordination site (MCS). Several metals including Co(2+), Mn(2+), and Zn(2+) are able to reactivate the metal-depleted PZAse in vitro. We use quantum mechanical calculations to investigate the Zn(2+), Fe(2+), and Mn(2+) metal cofactor effects on the local MCS structure, metal–ligand or metal–residue binding energy, and charge distribution. Results suggest that the major metal-dependent changes occur in the metal–ligand binding energy and charge distribution. Zn(2+) shows the highest binding energy to the ligands (residues). In addition, Zn(2+) and Mn(2+) within the PZAse MCS highly polarize the O–H bond of coordinated water molecules in comparison with Fe(2+). This suggests that the coordination of Zn(2+) or Mn(2+) to the PZAse protein facilitates the deprotonation of coordinated water to generate a nucleophile for catalysis as in carboxypeptidase A. Because metal ion binding is relevant to enzymatic reaction, identification of the metal binding event is important. The infrared vibrational mode shift of the C=Nε (His) bond from the M. tuberculosis MCS is the best IR probe to metal complexation. American Chemical Society 2014-07-23 2014-08-28 /pmc/articles/PMC4514207/ /pubmed/25055049 http://dx.doi.org/10.1021/jp504096d Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Salazar-Salinas, Karim
Baldera-Aguayo, Pedro A.
Encomendero-Risco, Jimy J.
Orihuela, Melvin
Sheen, Patricia
Seminario, Jorge M.
Zimic, Mirko
Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations
title Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations
title_full Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations
title_fullStr Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations
title_full_unstemmed Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations
title_short Metal-Ion Effects on the Polarization of Metal-Bound Water and Infrared Vibrational Modes of the Coordinated Metal Center of Mycobacterium tuberculosis Pyrazinamidase via Quantum Mechanical Calculations
title_sort metal-ion effects on the polarization of metal-bound water and infrared vibrational modes of the coordinated metal center of mycobacterium tuberculosis pyrazinamidase via quantum mechanical calculations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514207/
https://www.ncbi.nlm.nih.gov/pubmed/25055049
http://dx.doi.org/10.1021/jp504096d
work_keys_str_mv AT salazarsalinaskarim metalioneffectsonthepolarizationofmetalboundwaterandinfraredvibrationalmodesofthecoordinatedmetalcenterofmycobacteriumtuberculosispyrazinamidaseviaquantummechanicalcalculations
AT balderaaguayopedroa metalioneffectsonthepolarizationofmetalboundwaterandinfraredvibrationalmodesofthecoordinatedmetalcenterofmycobacteriumtuberculosispyrazinamidaseviaquantummechanicalcalculations
AT encomenderoriscojimyj metalioneffectsonthepolarizationofmetalboundwaterandinfraredvibrationalmodesofthecoordinatedmetalcenterofmycobacteriumtuberculosispyrazinamidaseviaquantummechanicalcalculations
AT orihuelamelvin metalioneffectsonthepolarizationofmetalboundwaterandinfraredvibrationalmodesofthecoordinatedmetalcenterofmycobacteriumtuberculosispyrazinamidaseviaquantummechanicalcalculations
AT sheenpatricia metalioneffectsonthepolarizationofmetalboundwaterandinfraredvibrationalmodesofthecoordinatedmetalcenterofmycobacteriumtuberculosispyrazinamidaseviaquantummechanicalcalculations
AT seminariojorgem metalioneffectsonthepolarizationofmetalboundwaterandinfraredvibrationalmodesofthecoordinatedmetalcenterofmycobacteriumtuberculosispyrazinamidaseviaquantummechanicalcalculations
AT zimicmirko metalioneffectsonthepolarizationofmetalboundwaterandinfraredvibrationalmodesofthecoordinatedmetalcenterofmycobacteriumtuberculosispyrazinamidaseviaquantummechanicalcalculations