Cargando…

On the rotational equations of motion in rigid body dynamics when using Euler parameters

Many models of three-dimensional rigid body dynamics employ Euler parameters as rotational coordinates. Since the four Euler parameters are not independent, one has to consider the quaternion constraint in the equations of motion. This is usually done by the Lagrange multiplier technique. In the pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Sherif, Karim, Nachbagauer, Karin, Steiner, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514727/
https://www.ncbi.nlm.nih.gov/pubmed/26224993
http://dx.doi.org/10.1007/s11071-015-1995-3
Descripción
Sumario:Many models of three-dimensional rigid body dynamics employ Euler parameters as rotational coordinates. Since the four Euler parameters are not independent, one has to consider the quaternion constraint in the equations of motion. This is usually done by the Lagrange multiplier technique. In the present paper, various forms of the rotational equations of motion will be derived, and it will be shown that they can be transformed into each other. Special attention is hereby given to the value of the Lagrange multiplier and the complexity of terms representing the inertia forces. Particular attention is also paid to the rotational generalized external force vector, which is not unique when using Euler parameters as rotational coordinates.