Cargando…

Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI

It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiu, Xianchao, Kong, Lingchen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515269/
https://www.ncbi.nlm.nih.gov/pubmed/26247010
http://dx.doi.org/10.1155/2015/169317
_version_ 1782382887355547648
author Xiu, Xianchao
Kong, Lingchen
author_facet Xiu, Xianchao
Kong, Lingchen
author_sort Xiu, Xianchao
collection PubMed
description It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance.
format Online
Article
Text
id pubmed-4515269
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-45152692015-08-05 Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI Xiu, Xianchao Kong, Lingchen Biomed Res Int Research Article It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance. Hindawi Publishing Corporation 2015 2015-07-12 /pmc/articles/PMC4515269/ /pubmed/26247010 http://dx.doi.org/10.1155/2015/169317 Text en Copyright © 2015 X. Xiu and L. Kong. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Xiu, Xianchao
Kong, Lingchen
Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
title Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
title_full Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
title_fullStr Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
title_full_unstemmed Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
title_short Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
title_sort rank-one and transformed sparse decomposition for dynamic cardiac mri
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515269/
https://www.ncbi.nlm.nih.gov/pubmed/26247010
http://dx.doi.org/10.1155/2015/169317
work_keys_str_mv AT xiuxianchao rankoneandtransformedsparsedecompositionfordynamiccardiacmri
AT konglingchen rankoneandtransformedsparsedecompositionfordynamiccardiacmri