Cargando…
Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515269/ https://www.ncbi.nlm.nih.gov/pubmed/26247010 http://dx.doi.org/10.1155/2015/169317 |
_version_ | 1782382887355547648 |
---|---|
author | Xiu, Xianchao Kong, Lingchen |
author_facet | Xiu, Xianchao Kong, Lingchen |
author_sort | Xiu, Xianchao |
collection | PubMed |
description | It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance. |
format | Online Article Text |
id | pubmed-4515269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-45152692015-08-05 Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI Xiu, Xianchao Kong, Lingchen Biomed Res Int Research Article It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance. Hindawi Publishing Corporation 2015 2015-07-12 /pmc/articles/PMC4515269/ /pubmed/26247010 http://dx.doi.org/10.1155/2015/169317 Text en Copyright © 2015 X. Xiu and L. Kong. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Xiu, Xianchao Kong, Lingchen Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI |
title | Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI |
title_full | Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI |
title_fullStr | Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI |
title_full_unstemmed | Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI |
title_short | Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI |
title_sort | rank-one and transformed sparse decomposition for dynamic cardiac mri |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515269/ https://www.ncbi.nlm.nih.gov/pubmed/26247010 http://dx.doi.org/10.1155/2015/169317 |
work_keys_str_mv | AT xiuxianchao rankoneandtransformedsparsedecompositionfordynamiccardiacmri AT konglingchen rankoneandtransformedsparsedecompositionfordynamiccardiacmri |