Cargando…
Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI
It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low...
Autores principales: | Xiu, Xianchao, Kong, Lingchen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515269/ https://www.ncbi.nlm.nih.gov/pubmed/26247010 http://dx.doi.org/10.1155/2015/169317 |
Ejemplares similares
-
Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction
por: Chen, Junbo, et al.
Publicado: (2017) -
Low-Rank Plus Sparse Decomposition of fMRI Data With Application to Alzheimer's Disease
por: Tu, Wei, et al.
Publicado: (2022) -
Low-Rank and Sparse Matrix Decomposition for Genetic
Interaction Data
por: Wang, Yishu, et al.
Publicado: (2015) -
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
por: Gou, Shuiping, et al.
Publicado: (2013) -
Discrete Shearlets as a Sparsifying Transform in Low-Rank Plus Sparse Decomposition for Undersampled (k, t)-Space MR Data
por: Protonotarios, Nicholas E., et al.
Publicado: (2022)