Cargando…

Significant Geometry Features in Tongue Image Analysis

The shape of a human tongue and its relation to a patients' state, either healthy or diseased (and if diseased which disease), is quantitatively analyzed using geometry features by means of computerized methods in this paper. Thirteen geometry features based on measurements, distances, areas, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Bob, Zhang, Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515517/
https://www.ncbi.nlm.nih.gov/pubmed/26246842
http://dx.doi.org/10.1155/2015/897580
Descripción
Sumario:The shape of a human tongue and its relation to a patients' state, either healthy or diseased (and if diseased which disease), is quantitatively analyzed using geometry features by means of computerized methods in this paper. Thirteen geometry features based on measurements, distances, areas, and their ratios are extracted from tongue images captured by a specially designed device with color correction. Using the features, 5 tongue shapes (rectangle, acute and obtuse triangles, square, and circle) are defined based on traditional Chinese medicine (TCM). Classification of the shapes is subsequently carried out with a decision tree. A large dataset consisting of 672 images comprising of 130 healthy and 542 disease examples (labeled according to Western medical practices) are tested. Experimental results show that the extracted geometry features are effective at tongue shape classification (coarse level). Even if more than one disease class belongs to the same shape, the disease classes can still be discriminated via fine level classification using a combination of the geometry features, with an average accuracy of 76.24% for all shapes.