Cargando…

Purification and Characterization of a Fucoidanase (FNase S) from a Marine Bacterium Sphingomonas paucimobilis PF-1

The Search for enzyme activities that efficiently degrade marine polysaccharides is becoming an increasingly important area for both structural analysis and production of lower-molecular weight oligosaccharides. In this study, an endo-acting fucoidanase that degrades Miyeokgui fucoidan (MF), a sulfa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Woo Jung, Park, Joo Woong, Park, Jae Kweon, Choi, Doo Jin, Park, Yong Il
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515624/
https://www.ncbi.nlm.nih.gov/pubmed/26193285
http://dx.doi.org/10.3390/md13074398
Descripción
Sumario:The Search for enzyme activities that efficiently degrade marine polysaccharides is becoming an increasingly important area for both structural analysis and production of lower-molecular weight oligosaccharides. In this study, an endo-acting fucoidanase that degrades Miyeokgui fucoidan (MF), a sulfated galactofucan isolated from the sporophyll (called Miyeokgui in Korean) of Undaria pinnatifida, into smaller-sized galactofuco-oligosaccharides (1000–4000 Da) was purified from a marine bacterium, Sphingomonas paucimobilis PF-1, by ammonium sulfate precipitation, diethylaminoethyl (DEAE)-Sepharose column chromatography, and chromatofocusing. The specific activity of this enzyme was approximately 112-fold higher than that of the crude enzyme, and its molecular weight was approximately 130 kDa (FNase S), as determined by native gel electrophoresis and 130 (S1), 70 (S2) and 60 (S3) kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature of FNase S were pH 6.0–7.0 and 40–45 °C, respectively. FNase S activity was enhanced by Mn(2+) and Na(+) (115.7% and 131.2%), but it was inhibited by Ca(2+), K(+), Ba(2+), Cu(2+) (96%, 83.7%, 84.3%, and 89.3%, respectively), each at 1 mM. The K(m), V(max) and K(cat) values of FNase S on MF were 1.7 mM, 0.62 mg·min(−1), and 0.38·S(−1), respectively. This enzyme could be a valuable tool for the structural analysis of fucoidans and production of bioactive fuco-oligosaccharides.