Cargando…

Mechanism of potassium ion uptake by the Na(+)/K(+)-ATPase

The Na(+)/K(+)-ATPase restores sodium (Na(+)) and potassium (K(+)) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, thre...

Descripción completa

Detalles Bibliográficos
Autores principales: Castillo, Juan P., Rui, Huan, Basilio, Daniel, Das, Avisek, Roux, Benoît, Latorre, Ramon, Bezanilla, Francisco, Holmgren, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515779/
https://www.ncbi.nlm.nih.gov/pubmed/26205423
http://dx.doi.org/10.1038/ncomms8622
Descripción
Sumario:The Na(+)/K(+)-ATPase restores sodium (Na(+)) and potassium (K(+)) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na(+) ions are released, followed by the binding and occlusion of two K(+) ions. While the mechanisms of Na(+) release have been well characterized by the study of transient Na(+) currents, smaller and faster transient currents mediated by external K(+) have been more difficult to study. Here we show that external K(+) ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K(+) gating different from that of Na(+) occlusion.