Cargando…
Improved Variable Selection Algorithm Using a LASSO-Type Penalty, with an Application to Assessing Hepatitis B Infection Relevant Factors in Community Residents
OBJECTIVES: In epidemiological studies, it is important to identify independent associations between collective exposures and a health outcome. The current stepwise selection technique ignores stochastic errors and suffers from a lack of stability. The alternative LASSO-penalized regression model ca...
Autores principales: | Guo, Pi, Zeng, Fangfang, Hu, Xiaomin, Zhang, Dingmei, Zhu, Shuming, Deng, Yu, Hao, Yuantao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516242/ https://www.ncbi.nlm.nih.gov/pubmed/26214802 http://dx.doi.org/10.1371/journal.pone.0134151 |
Ejemplares similares
-
Epidemiology of hepatitis B virus infection: results from a community-based study of 0.15 million residents in South China
por: Zeng, Fangfang, et al.
Publicado: (2016) -
MCPeSe: Monte Carlo penalty selection for graphical lasso
por: Kuismin, Markku, et al.
Publicado: (2020) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Comparison of the modified unbounded penalty and the LASSO to select predictive genes of response to chemotherapy in breast cancer
por: Collignon, Olivier, et al.
Publicado: (2018) -
A Disentangled Representation Based Brain Image Fusion via Group Lasso Penalty
por: Wang, Anqi, et al.
Publicado: (2022)