Cargando…
Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants
BACKGROUND: While next generation sequencing (NGS) is a useful tool for the identification of genetic variants to aid diagnosis and support therapy decision, high sequencing costs have limited its application within routine clinical care, especially in economically depressed areas. To investigate th...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516357/ https://www.ncbi.nlm.nih.gov/pubmed/26214305 http://dx.doi.org/10.1371/journal.pone.0133742 |
_version_ | 1782383053344079872 |
---|---|
author | Delio, Maria Patel, Kunjan Maslov, Alex Marion, Robert W. McDonald, Thomas V. Cadoff, Evan M. Golden, Aaron Greally, John M. Vijg, Jan Morrow, Bernice Montagna, Cristina |
author_facet | Delio, Maria Patel, Kunjan Maslov, Alex Marion, Robert W. McDonald, Thomas V. Cadoff, Evan M. Golden, Aaron Greally, John M. Vijg, Jan Morrow, Bernice Montagna, Cristina |
author_sort | Delio, Maria |
collection | PubMed |
description | BACKGROUND: While next generation sequencing (NGS) is a useful tool for the identification of genetic variants to aid diagnosis and support therapy decision, high sequencing costs have limited its application within routine clinical care, especially in economically depressed areas. To investigate the utility of a multi-disease NGS based genetic test, we designed a custom sequencing assay targeting over thirty disease-associated areas including cardiac disorders, intellectual disabilities, hearing loss, collagenopathies, muscular dystrophy, Ashkenazi Jewish genetic disorders, and complex Mendelian disorders. We focused on these specific areas based on the interest of our collaborative clinical team, suggesting these diseases being the ones in need for the development of a sequencing-screening assay. RESULTS: We targeted all coding, untranslated regions (UTR) and flanking intronic regions of 650 known disease-associated genes using the Roche-NimbleGen EZ SeqCapV3 capture system and sequenced on the Illumina HiSeq 2500 Rapid Run platform. Eight controls with known variants and one HapMap sample were first sequenced to assess the performance of the panel. Subsequently, as a proof of principle and to explore the possible utility of our test, we analyzed test disease subjects (n = 16). Eight had known Mendelian disorders and eight had complex pediatric diseases. In addition to assess whether copy number variation may be of utility as a companion assay relative to these specific disease areas, we used the Affymetrix Genome-Wide SNP Array 6.0 to analyze the same samples. CONCLUSION: We identified potentially disease-associated variants: 22 missense, 4 nonsense, 1 frameshift, and 1 splice variants (16 previously identified, 12 novel among dbSNP and 15 novel among NHLBI Exome Variant Server). We found multi-disease targeted high-throughput sequencing to be a cost efficient approach in detecting disease-associated variants to aid diagnosis. |
format | Online Article Text |
id | pubmed-4516357 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45163572015-07-29 Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants Delio, Maria Patel, Kunjan Maslov, Alex Marion, Robert W. McDonald, Thomas V. Cadoff, Evan M. Golden, Aaron Greally, John M. Vijg, Jan Morrow, Bernice Montagna, Cristina PLoS One Research Article BACKGROUND: While next generation sequencing (NGS) is a useful tool for the identification of genetic variants to aid diagnosis and support therapy decision, high sequencing costs have limited its application within routine clinical care, especially in economically depressed areas. To investigate the utility of a multi-disease NGS based genetic test, we designed a custom sequencing assay targeting over thirty disease-associated areas including cardiac disorders, intellectual disabilities, hearing loss, collagenopathies, muscular dystrophy, Ashkenazi Jewish genetic disorders, and complex Mendelian disorders. We focused on these specific areas based on the interest of our collaborative clinical team, suggesting these diseases being the ones in need for the development of a sequencing-screening assay. RESULTS: We targeted all coding, untranslated regions (UTR) and flanking intronic regions of 650 known disease-associated genes using the Roche-NimbleGen EZ SeqCapV3 capture system and sequenced on the Illumina HiSeq 2500 Rapid Run platform. Eight controls with known variants and one HapMap sample were first sequenced to assess the performance of the panel. Subsequently, as a proof of principle and to explore the possible utility of our test, we analyzed test disease subjects (n = 16). Eight had known Mendelian disorders and eight had complex pediatric diseases. In addition to assess whether copy number variation may be of utility as a companion assay relative to these specific disease areas, we used the Affymetrix Genome-Wide SNP Array 6.0 to analyze the same samples. CONCLUSION: We identified potentially disease-associated variants: 22 missense, 4 nonsense, 1 frameshift, and 1 splice variants (16 previously identified, 12 novel among dbSNP and 15 novel among NHLBI Exome Variant Server). We found multi-disease targeted high-throughput sequencing to be a cost efficient approach in detecting disease-associated variants to aid diagnosis. Public Library of Science 2015-07-27 /pmc/articles/PMC4516357/ /pubmed/26214305 http://dx.doi.org/10.1371/journal.pone.0133742 Text en © 2015 Delio et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Delio, Maria Patel, Kunjan Maslov, Alex Marion, Robert W. McDonald, Thomas V. Cadoff, Evan M. Golden, Aaron Greally, John M. Vijg, Jan Morrow, Bernice Montagna, Cristina Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants |
title | Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants |
title_full | Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants |
title_fullStr | Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants |
title_full_unstemmed | Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants |
title_short | Development of a Targeted Multi-Disorder High-Throughput Sequencing Assay for the Effective Identification of Disease-Causing Variants |
title_sort | development of a targeted multi-disorder high-throughput sequencing assay for the effective identification of disease-causing variants |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516357/ https://www.ncbi.nlm.nih.gov/pubmed/26214305 http://dx.doi.org/10.1371/journal.pone.0133742 |
work_keys_str_mv | AT deliomaria developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT patelkunjan developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT maslovalex developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT marionrobertw developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT mcdonaldthomasv developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT cadoffevanm developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT goldenaaron developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT greallyjohnm developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT vijgjan developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT morrowbernice developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants AT montagnacristina developmentofatargetedmultidisorderhighthroughputsequencingassayfortheeffectiveidentificationofdiseasecausingvariants |