Cargando…
Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish
When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516420/ https://www.ncbi.nlm.nih.gov/pubmed/26240605 http://dx.doi.org/10.1111/eva.12275 |
_version_ | 1782383062631317504 |
---|---|
author | Giery, Sean T Layman, Craig A Langerhans, R Brian |
author_facet | Giery, Sean T Layman, Craig A Langerhans, R Brian |
author_sort | Giery, Sean T |
collection | PubMed |
description | When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form of human-induced environmental alteration, habitat fragmentation, may drive phenotypic divergence among three closely related species of Bahamian mosquitofish (Gambusia spp.). Focusing on one phenotypic trait (male coloration), having a priori predictions of divergence, we tested whether populations persisting in fragmented habitats differed from those inhabiting unfragmented habitats and examined the consistency of the pattern across species. Species exhibited both shared and unique patterns of phenotypic divergence between the two types of habitats, with shared patterns representing the stronger effect. For all species, populations in fragmented habitats had fewer dorsal-fin spots. In contrast, the magnitude and trajectory of divergence in dorsal-fin color, a sexually selected trait, differed among species. We identified fragmentation-mediated increased turbidity as a possible driver of these trait shifts. These results suggest that even closely related species can exhibit diverse phenotypic responses when encountering similar human-mediated selection regimes. This element of unpredictability complicates forecasting the phenotypic responses of wild organisms faced with anthropogenic change – an important component of biological conservation and ecosystem management. |
format | Online Article Text |
id | pubmed-4516420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley & Sons, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-45164202015-08-03 Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish Giery, Sean T Layman, Craig A Langerhans, R Brian Evol Appl Original Articles When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form of human-induced environmental alteration, habitat fragmentation, may drive phenotypic divergence among three closely related species of Bahamian mosquitofish (Gambusia spp.). Focusing on one phenotypic trait (male coloration), having a priori predictions of divergence, we tested whether populations persisting in fragmented habitats differed from those inhabiting unfragmented habitats and examined the consistency of the pattern across species. Species exhibited both shared and unique patterns of phenotypic divergence between the two types of habitats, with shared patterns representing the stronger effect. For all species, populations in fragmented habitats had fewer dorsal-fin spots. In contrast, the magnitude and trajectory of divergence in dorsal-fin color, a sexually selected trait, differed among species. We identified fragmentation-mediated increased turbidity as a possible driver of these trait shifts. These results suggest that even closely related species can exhibit diverse phenotypic responses when encountering similar human-mediated selection regimes. This element of unpredictability complicates forecasting the phenotypic responses of wild organisms faced with anthropogenic change – an important component of biological conservation and ecosystem management. John Wiley & Sons, Ltd 2015-08 2015-07-16 /pmc/articles/PMC4516420/ /pubmed/26240605 http://dx.doi.org/10.1111/eva.12275 Text en © 2015 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Giery, Sean T Layman, Craig A Langerhans, R Brian Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish |
title | Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish |
title_full | Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish |
title_fullStr | Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish |
title_full_unstemmed | Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish |
title_short | Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish |
title_sort | anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of bahamian mosquitofish |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516420/ https://www.ncbi.nlm.nih.gov/pubmed/26240605 http://dx.doi.org/10.1111/eva.12275 |
work_keys_str_mv | AT gieryseant anthropogenicecosystemfragmentationdrivessharedanduniquepatternsofsexualsignaldivergenceamongthreespeciesofbahamianmosquitofish AT laymancraiga anthropogenicecosystemfragmentationdrivessharedanduniquepatternsofsexualsignaldivergenceamongthreespeciesofbahamianmosquitofish AT langerhansrbrian anthropogenicecosystemfragmentationdrivessharedanduniquepatternsofsexualsignaldivergenceamongthreespeciesofbahamianmosquitofish |