Cargando…
Sensorimotor organization of a sustained involuntary movement
Involuntary movements share much of the motor control circuitry used for voluntary movement, yet the two can be easily distinguished. The Kohnstamm phenomenon (where a sustained, hard push produces subsequent involuntary arm raising) is a useful experimental model for exploring differences between v...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517064/ https://www.ncbi.nlm.nih.gov/pubmed/26283934 http://dx.doi.org/10.3389/fnbeh.2015.00185 |
_version_ | 1782383145313632256 |
---|---|
author | De Havas, Jack Ghosh, Arko Gomi, Hiroaki Haggard, Patrick |
author_facet | De Havas, Jack Ghosh, Arko Gomi, Hiroaki Haggard, Patrick |
author_sort | De Havas, Jack |
collection | PubMed |
description | Involuntary movements share much of the motor control circuitry used for voluntary movement, yet the two can be easily distinguished. The Kohnstamm phenomenon (where a sustained, hard push produces subsequent involuntary arm raising) is a useful experimental model for exploring differences between voluntary and involuntary movement. Both central and peripheral accounts have been proposed, but little is known regarding how the putative Kohnstamm generator responds to afferent input. We addressed this by obstructing the involuntary upward movement of the arm. Obstruction prevented the rising EMG pattern that characterizes the Kohnstamm. Importantly, once the obstruction was removed, the EMG signal resumed its former increase, suggesting a generator that persists despite peripheral input. When only one arm was obstructed during bilateral involuntary movements, only the EMG signal from the obstructed arm showed the effect. Upon release of the obstacle, the obstructed arm reached the same position and EMG level as the unobstructed arm. Comparison to matched voluntary movements revealed a preserved stretch response when a Kohnstamm movement first contacts an obstacle, and also an overestimation of the perceived contact force. Our findings support a hybrid central and peripheral account of the Kohnstamm phenomenon. The strange subjective experience of this involuntary movement is consistent with the view that movement awareness depends strongly on efference copies, but that the Kohnstamm generator does not produces efference copies. |
format | Online Article Text |
id | pubmed-4517064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45170642015-08-17 Sensorimotor organization of a sustained involuntary movement De Havas, Jack Ghosh, Arko Gomi, Hiroaki Haggard, Patrick Front Behav Neurosci Neuroscience Involuntary movements share much of the motor control circuitry used for voluntary movement, yet the two can be easily distinguished. The Kohnstamm phenomenon (where a sustained, hard push produces subsequent involuntary arm raising) is a useful experimental model for exploring differences between voluntary and involuntary movement. Both central and peripheral accounts have been proposed, but little is known regarding how the putative Kohnstamm generator responds to afferent input. We addressed this by obstructing the involuntary upward movement of the arm. Obstruction prevented the rising EMG pattern that characterizes the Kohnstamm. Importantly, once the obstruction was removed, the EMG signal resumed its former increase, suggesting a generator that persists despite peripheral input. When only one arm was obstructed during bilateral involuntary movements, only the EMG signal from the obstructed arm showed the effect. Upon release of the obstacle, the obstructed arm reached the same position and EMG level as the unobstructed arm. Comparison to matched voluntary movements revealed a preserved stretch response when a Kohnstamm movement first contacts an obstacle, and also an overestimation of the perceived contact force. Our findings support a hybrid central and peripheral account of the Kohnstamm phenomenon. The strange subjective experience of this involuntary movement is consistent with the view that movement awareness depends strongly on efference copies, but that the Kohnstamm generator does not produces efference copies. Frontiers Media S.A. 2015-07-28 /pmc/articles/PMC4517064/ /pubmed/26283934 http://dx.doi.org/10.3389/fnbeh.2015.00185 Text en Copyright © 2015 De Havas, Ghosh, Gomi and Haggard. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience De Havas, Jack Ghosh, Arko Gomi, Hiroaki Haggard, Patrick Sensorimotor organization of a sustained involuntary movement |
title | Sensorimotor organization of a sustained involuntary movement |
title_full | Sensorimotor organization of a sustained involuntary movement |
title_fullStr | Sensorimotor organization of a sustained involuntary movement |
title_full_unstemmed | Sensorimotor organization of a sustained involuntary movement |
title_short | Sensorimotor organization of a sustained involuntary movement |
title_sort | sensorimotor organization of a sustained involuntary movement |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517064/ https://www.ncbi.nlm.nih.gov/pubmed/26283934 http://dx.doi.org/10.3389/fnbeh.2015.00185 |
work_keys_str_mv | AT dehavasjack sensorimotororganizationofasustainedinvoluntarymovement AT ghosharko sensorimotororganizationofasustainedinvoluntarymovement AT gomihiroaki sensorimotororganizationofasustainedinvoluntarymovement AT haggardpatrick sensorimotororganizationofasustainedinvoluntarymovement |