Cargando…

trans-Symmetric Dynamic Covalent Systems: Connected Transamination and Transimination Reactions

The development of chemical transaminations as a new type of dynamic covalent reaction is described. The key 1,3-proton shift is under complete catalytic control and can be conducted orthogonally to, or simultaneous with, transimination in the presence of an amine to rapidly yield two-dimensional dy...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaufelberger, Fredrik, Hu, Lei, Ramström, Olof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517097/
https://www.ncbi.nlm.nih.gov/pubmed/26044061
http://dx.doi.org/10.1002/chem.201500520
Descripción
Sumario:The development of chemical transaminations as a new type of dynamic covalent reaction is described. The key 1,3-proton shift is under complete catalytic control and can be conducted orthogonally to, or simultaneous with, transimination in the presence of an amine to rapidly yield two-dimensional dynamic systems with a high degree of complexity evolution. The transamination–transimination systems are proven to be fully reversible, stable over several days, compatible with a range of functional groups, and highly tunable. Kinetic studies show transamination to be the rate-limiting reaction in the network. Furthermore, it was discovered that readily available quinuclidine is a highly potent catalyst for aldimine transaminations. This study demonstrates how connected dynamic reactions give rise to significantly larger systems than the unconnected counterparts, and shows how reversible isomerizations can be utilized as an effective diversity-generating element.