Cargando…

Region Specific Effects of Maternal Immune Activation on Offspring Neuroimmune Function

Growing evidence suggests that maternal immune activation has a significant impact on the immuno-competence of the offspring. The present study aimed to characterize region-specific effects of maternal immune activation on the offspring’s neuroimmune function. The offspring born to dams treated with...

Descripción completa

Detalles Bibliográficos
Autor principal: Zhou, Heping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517690/
https://www.ncbi.nlm.nih.gov/pubmed/26229739
http://dx.doi.org/10.4236/oji.2015.52006
Descripción
Sumario:Growing evidence suggests that maternal immune activation has a significant impact on the immuno-competence of the offspring. The present study aimed to characterize region-specific effects of maternal immune activation on the offspring’s neuroimmune function. The offspring born to dams treated with saline or lipopolysaccharide (LPS) at gestational day 18 was stimulated with saline or LPS at postnatal day 21, and the mRNA expression of various inflammatory genes in different brain regions of the offspring was analyzed. The offspring born to saline-treated dams exhibited a typical neuroimmune response with elevated levels of cytokines and chemokines following LPS stimulation in all four brain regions examined. In contrast, the offspring born to LPS-treated dams exhibited significantly reduced mRNA induction of cytokines and chemokines following LPS stimulation in the prefrontal cortex but not in the brainstem when compared with pups born to saline-treated dams. Furthermore, the mRNA expression of LPS-induced I-κBζ was significantly attenuated in the prefrontal cortex when compared with pups born to saline-treated dams. These results suggest that maternal LPS may have differential effects on the neuroimmune function in different regions of the offspring brain, and highlight the importance of maternal milieu in the development of neuroimmune function in the offspring.