Cargando…
Learning the Structure of Biomedical Relationships from Unstructured Text
The published biomedical research literature encompasses most of our understanding of how drugs interact with gene products to produce physiological responses (phenotypes). Unfortunately, this information is distributed throughout the unstructured text of over 23 million articles. The creation of st...
Autores principales: | Percha, Bethany, Altman, Russ B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517797/ https://www.ncbi.nlm.nih.gov/pubmed/26219079 http://dx.doi.org/10.1371/journal.pcbi.1004216 |
Ejemplares similares
-
A global network of biomedical relationships derived from text
por: Percha, Bethany, et al.
Publicado: (2018) -
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts
por: Wang, Yanshan, et al.
Publicado: (2017) -
Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text
por: Garten, Yael, et al.
Publicado: (2009) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: (2013)