Cargando…

Site-Directed Mutagenesis of a Hyperthermophilic Endoglucanase Cel12B from Thermotoga maritima Based on Rational Design

To meet the demand for the application of high activity and thermostable cellulases in the production of new-generation bioethanol from nongrain-cellulose sources, a hyperthermostable β-1,4-endoglucase Cel12B from Thermotoga maritima was selected for further modification by gene site-directed mutage...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jinfeng, Shi, Hao, Xu, Linyu, Zhu, Xiaoyan, Li, Xiangqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517919/
https://www.ncbi.nlm.nih.gov/pubmed/26218520
http://dx.doi.org/10.1371/journal.pone.0133824
Descripción
Sumario:To meet the demand for the application of high activity and thermostable cellulases in the production of new-generation bioethanol from nongrain-cellulose sources, a hyperthermostable β-1,4-endoglucase Cel12B from Thermotoga maritima was selected for further modification by gene site-directed mutagenesis method in the present study, based on homology modeling and rational design. As a result, two recombinant enzymes showed significant improvement in enzyme activity by 77% and 87%, respectively, higher than the parental enzyme TmCel12B. Furthermore, the two mutants could retain 80% and 90.5% of their initial activity after incubation at 80°C for 8 h, while only 45% for 5 h to TmCel12B. The K (m) and V (max) of the two recombinant enzymes were 1.97±0.05 mM, 4.23±0.15 μmol·mg(-1)·min(-1) of TmCel12B-E225H-K207G-D37V, and 2.97±0.12 mM, 3.15±0.21 μmol·mg(-1)·min(-1) of TmCel12B-E225H-K207G, respectively, when using CMC-Na as the substrate. The roles of the mutation sites were also analyzed and evaluated in terms of electron density, hydrophobicity of the modeled protein structures. The recombinant enzymes may be used in the hydrolysis of cellulose at higher temperature in the future. It was concluded that the gene mutagenesis approach of a certain active residues may effectively improve the performance of cellulases for the industrial applications and contribute to the study the thermostable mechanism of thermophilic enzymes.