Cargando…
Protective effect of epigallocatechin gallate, a major constituent of green tea, against renal ischemia–reperfusion injury in rats
BACKGROUND: Renal ischemia–reperfusion (I/R) injury plays an important role in the acute kidney injury. The pathogenetic mechanisms potential I/R injury is involved in apoptosis and inflammation. Epigallocatechin gallate (EGCG), a major constituent of green tea, has been shown to have anti-inflammat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518080/ https://www.ncbi.nlm.nih.gov/pubmed/26122117 http://dx.doi.org/10.1007/s11255-015-1030-0 |
Sumario: | BACKGROUND: Renal ischemia–reperfusion (I/R) injury plays an important role in the acute kidney injury. The pathogenetic mechanisms potential I/R injury is involved in apoptosis and inflammation. Epigallocatechin gallate (EGCG), a major constituent of green tea, has been shown to have anti-inflammatory and anti-apoptotic activities. This study aimed to explore the underlying effects and mechanisms of EGCG on renal I/R injury in a rat model. MATERIALS AND METHODS: We induced renal I/R injury in SD rats by clamping the left renal artery for 45 min followed by 24-h reperfusion, along with a contralateral nephrectomy. We randomly allocated 30 rats to three groups (n = 10): sham group, IRI group, and EGCG group. We preconditioned rats intraperitoneally with EGCG (50 mg/kg) or vehicle (50 mg/kg) 45 min before inducing renal ischemia. We collected serum and kidneys at 24 h after reperfusion. Renal function and histologic damage were assessed. We also determined markers of inflammation and apoptosis in kidneys or serum. RESULTS: EGCG pretreatment can significantly reduce renal dysfunction, histologic change and the expression of tumor necrosis factor-α, IL-1β, IL-6, Bax and cleavage caspase 3 induced by I/R injury and increase the expression of Bax and caspase 3. Moreover, EGCG pretreatment can further induce the activation of p38 mitogen-activated protein kinase in kidney, with no influence on the expression of p38. CONCLUSIONS: EGCG treatment can decrease renal ischemia–reperfusion injury by suppressing inflammation and cell apoptosis. Thus, EGCG may represent a potential strategy to reduce renal I/R injury. |
---|