Cargando…

Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) Downregulates the Expression of Protumor Factors Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in a GM-CSF Receptor-Independent Manner in Cervical Cancer Cells

Enhanced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) is associated with the pathogenic processes of various tumor types. COX-2 and iNOS expression in the immunomodulatory dendritic cells is mediated by the granulocyte macrophage-colony stimulating factor (GM-CSF...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Nanyan, Tian, Zhiqiang, Tang, Jun, Ou, Rongying, Xu, Yunsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518190/
https://www.ncbi.nlm.nih.gov/pubmed/26257474
http://dx.doi.org/10.1155/2015/601604
Descripción
Sumario:Enhanced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) is associated with the pathogenic processes of various tumor types. COX-2 and iNOS expression in the immunomodulatory dendritic cells is mediated by the granulocyte macrophage-colony stimulating factor (GM-CSF), which is also expressed by cervical cancer cells; however, whether and how GM-CSF regulates COX-2 and iNOS expression in clinical cervical cancer cells remain unknown. In this study, we found that the COX-2 and iNOS expression was upregulated in the cervical cancer tissues and positively correlated with cancer metastasis and stage. About one-half of the cervical cancer tissues showed strong/moderate GM-CSF expression, while the normal cervical tissues showed >80% positive rate; no GM-CSFR protein was detectable on the cervical cancer cells. The GM-CSF expression was negatively correlated with the COX-2 and iNOS expression in the cervical cancer tissues and the functional negative regulatory effect of GM-CSF on COX-2/iNOS expression was demonstrated in various cervical cancer cell lines. Therefore, in cervical cancer cells, GM-CSF might contribute an antitumor response by inhibiting iNOS and COX-2 expression in a GM-CSFR independent manner.