Cargando…
Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis
Recommender systems are highly vulnerable to shilling attacks, both by individuals and groups. Attackers who introduce biased ratings in order to affect recommendations, have been shown to negatively affect collaborative filtering (CF) algorithms. Previous research focuses only on the differences be...
Autores principales: | Zhou, Wei, Wen, Junhao, Koh, Yun Sing, Xiong, Qingyu, Gao, Min, Dobbie, Gillian, Alam, Shafiq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519300/ https://www.ncbi.nlm.nih.gov/pubmed/26222882 http://dx.doi.org/10.1371/journal.pone.0130968 |
Ejemplares similares
-
Shilling attack detection for recommender systems based on credibility of group users and rating time series
por: Zhou, Wei, et al.
Publicado: (2018) -
SAShA: Semantic-Aware Shilling Attacks on Recommender Systems Exploiting Knowledge Graphs
por: Anelli, Vito Walter, et al.
Publicado: (2020) -
The Gethin Shilling
por: Jancar, J.
Publicado: (1974) -
Item Anomaly Detection Based on Dynamic Partition for Time Series in Recommender Systems
por: Gao, Min, et al.
Publicado: (2015) -
DEVELOPING SPEAKING SHILLS IN YOUNG LEARNERS /
por: Bravo, Misraim Ambell
Publicado: (2019)