Cargando…
BAI1-Associated Protein 2-Like 1 (BAIAP2L1) Is a Potential Biomarker in Ovarian Cancer
Brain-specific angiogenesis inhibitor 1 (BAI1)-associated protein 2-like 1 (BAIAP2L1), also known as insulin receptor tyrosine kinase substrate (IRTKS), is involved in plasma membrane protrusion and actin formation during cell morphogenesis and migration. BAIAP2L1 is recently reported to promote cel...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519316/ https://www.ncbi.nlm.nih.gov/pubmed/26222696 http://dx.doi.org/10.1371/journal.pone.0133081 |
Sumario: | Brain-specific angiogenesis inhibitor 1 (BAI1)-associated protein 2-like 1 (BAIAP2L1), also known as insulin receptor tyrosine kinase substrate (IRTKS), is involved in plasma membrane protrusion and actin formation during cell morphogenesis and migration. BAIAP2L1 is recently reported to promote cell proliferation through activation of the EGFR-ERK pathway in hepatocellular carcinoma. In this study, we report the first comprehensive study of BAIAP2L1 upregulation in human ovarian cancer. Upregulation of BAIAP2L1 in ovarian tumors was first found during RNA screening and confirmed by immunohistochemical studies on ovarian cancers and other cancer types. Significant upregulation of BAIAP2L1 in ovarian cancer was validated by analyzing multiple independent cohorts in publicly available data sets. Furthermore, BAIAP2L1 protein expression in metastatic lesions was higher than the corresponding primary tumors. Functional assays in ovarian cancer cells revealed that BAIAP2L1 is involved in promoting cell proliferation and avoiding apoptosis. In conclusion, results of this study not only indicate that BAIAP2L1 can be used as a biomarker for human ovarian cancer but also reveal its role in cancer biology. Further elucidation of the role of BAIAP2L1 in context of the insulin receptor signaling pathways of cancer cells is warranted for developing cancer therapeutics by targeting cancer-specific metabolism. |
---|