Cargando…

A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism

As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enrich...

Descripción completa

Detalles Bibliográficos
Autores principales: Solis-Escalante, Daniel, Kuijpers, Niels G. A., Barrajon-Simancas, Nuria, van den Broek, Marcel, Pronk, Jack T., Daran, Jean-Marc, Daran-Lapujade, Pascale
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519752/
https://www.ncbi.nlm.nih.gov/pubmed/26071034
http://dx.doi.org/10.1128/EC.00064-15
_version_ 1782383548248883200
author Solis-Escalante, Daniel
Kuijpers, Niels G. A.
Barrajon-Simancas, Nuria
van den Broek, Marcel
Pronk, Jack T.
Daran, Jean-Marc
Daran-Lapujade, Pascale
author_facet Solis-Escalante, Daniel
Kuijpers, Niels G. A.
Barrajon-Simancas, Nuria
van den Broek, Marcel
Pronk, Jack T.
Daran, Jean-Marc
Daran-Lapujade, Pascale
author_sort Solis-Escalante, Daniel
collection PubMed
description As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae's current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the “minimal glycolysis” [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community.
format Online
Article
Text
id pubmed-4519752
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-45197522015-08-27 A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism Solis-Escalante, Daniel Kuijpers, Niels G. A. Barrajon-Simancas, Nuria van den Broek, Marcel Pronk, Jack T. Daran, Jean-Marc Daran-Lapujade, Pascale Eukaryot Cell Articles As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae's current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the “minimal glycolysis” [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community. American Society for Microbiology 2015-07-29 2015-08 /pmc/articles/PMC4519752/ /pubmed/26071034 http://dx.doi.org/10.1128/EC.00064-15 Text en Copyright © 2015, Solis-Escalante et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Articles
Solis-Escalante, Daniel
Kuijpers, Niels G. A.
Barrajon-Simancas, Nuria
van den Broek, Marcel
Pronk, Jack T.
Daran, Jean-Marc
Daran-Lapujade, Pascale
A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism
title A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism
title_full A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism
title_fullStr A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism
title_full_unstemmed A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism
title_short A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism
title_sort minimal set of glycolytic genes reveals strong redundancies in saccharomyces cerevisiae central metabolism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519752/
https://www.ncbi.nlm.nih.gov/pubmed/26071034
http://dx.doi.org/10.1128/EC.00064-15
work_keys_str_mv AT solisescalantedaniel aminimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT kuijpersnielsga aminimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT barrajonsimancasnuria aminimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT vandenbroekmarcel aminimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT pronkjackt aminimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT daranjeanmarc aminimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT daranlapujadepascale aminimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT solisescalantedaniel minimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT kuijpersnielsga minimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT barrajonsimancasnuria minimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT vandenbroekmarcel minimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT pronkjackt minimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT daranjeanmarc minimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism
AT daranlapujadepascale minimalsetofglycolyticgenesrevealsstrongredundanciesinsaccharomycescerevisiaecentralmetabolism