Cargando…
Hydrogels for Engineering of Perfusable Vascular Networks
Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519935/ https://www.ncbi.nlm.nih.gov/pubmed/26184185 http://dx.doi.org/10.3390/ijms160715997 |
_version_ | 1782383582474403840 |
---|---|
author | Liu, Juan Zheng, Huaiyuan Poh, Patrina S. P. Machens, Hans-Günther Schilling, Arndt F. |
author_facet | Liu, Juan Zheng, Huaiyuan Poh, Patrina S. P. Machens, Hans-Günther Schilling, Arndt F. |
author_sort | Liu, Juan |
collection | PubMed |
description | Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation. |
format | Online Article Text |
id | pubmed-4519935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-45199352015-08-03 Hydrogels for Engineering of Perfusable Vascular Networks Liu, Juan Zheng, Huaiyuan Poh, Patrina S. P. Machens, Hans-Günther Schilling, Arndt F. Int J Mol Sci Review Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation. MDPI 2015-07-14 /pmc/articles/PMC4519935/ /pubmed/26184185 http://dx.doi.org/10.3390/ijms160715997 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Liu, Juan Zheng, Huaiyuan Poh, Patrina S. P. Machens, Hans-Günther Schilling, Arndt F. Hydrogels for Engineering of Perfusable Vascular Networks |
title | Hydrogels for Engineering of Perfusable Vascular Networks |
title_full | Hydrogels for Engineering of Perfusable Vascular Networks |
title_fullStr | Hydrogels for Engineering of Perfusable Vascular Networks |
title_full_unstemmed | Hydrogels for Engineering of Perfusable Vascular Networks |
title_short | Hydrogels for Engineering of Perfusable Vascular Networks |
title_sort | hydrogels for engineering of perfusable vascular networks |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519935/ https://www.ncbi.nlm.nih.gov/pubmed/26184185 http://dx.doi.org/10.3390/ijms160715997 |
work_keys_str_mv | AT liujuan hydrogelsforengineeringofperfusablevascularnetworks AT zhenghuaiyuan hydrogelsforengineeringofperfusablevascularnetworks AT pohpatrinasp hydrogelsforengineeringofperfusablevascularnetworks AT machenshansgunther hydrogelsforengineeringofperfusablevascularnetworks AT schillingarndtf hydrogelsforengineeringofperfusablevascularnetworks |