Cargando…
An Anisotropic Effective Model for the Simulation of Semiflexible Ring Polymers
[Image: see text] We derive and introduce anisotropic effective pair potentials to coarse-grain solutions of semiflexible ring polymers of various lengths. The system has been recently investigated by means of full monomer-resolved computer simulations, revealing a host of unusual features and struc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519991/ https://www.ncbi.nlm.nih.gov/pubmed/26240439 http://dx.doi.org/10.1021/acs.macromol.5b00603 |
_version_ | 1782383593083895808 |
---|---|
author | Poier, Peter Likos, Christos N. Moreno, Angel J. Blaak, Ronald |
author_facet | Poier, Peter Likos, Christos N. Moreno, Angel J. Blaak, Ronald |
author_sort | Poier, Peter |
collection | PubMed |
description | [Image: see text] We derive and introduce anisotropic effective pair potentials to coarse-grain solutions of semiflexible ring polymers of various lengths. The system has been recently investigated by means of full monomer-resolved computer simulations, revealing a host of unusual features and structure formation, which, however, cannot be captured by a rotationally averaged effective pair potential between the rings’ centers of mass [ M. Bernabei; Soft Matter2013, 9, 1287]. Our new coarse-graining strategy is to picture each ring as a soft, penetrable disk. We demonstrate that for the short- and intermediate-length rings the new model is quite capable of capturing the physics in a quantitative fashion, whereas for the largest rings, which resemble flexible ones, it fails at high densities. Our work opens the way for the physical justification of general, anisotropic penetrable interaction potentials. |
format | Online Article Text |
id | pubmed-4519991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-45199912015-08-01 An Anisotropic Effective Model for the Simulation of Semiflexible Ring Polymers Poier, Peter Likos, Christos N. Moreno, Angel J. Blaak, Ronald Macromolecules [Image: see text] We derive and introduce anisotropic effective pair potentials to coarse-grain solutions of semiflexible ring polymers of various lengths. The system has been recently investigated by means of full monomer-resolved computer simulations, revealing a host of unusual features and structure formation, which, however, cannot be captured by a rotationally averaged effective pair potential between the rings’ centers of mass [ M. Bernabei; Soft Matter2013, 9, 1287]. Our new coarse-graining strategy is to picture each ring as a soft, penetrable disk. We demonstrate that for the short- and intermediate-length rings the new model is quite capable of capturing the physics in a quantitative fashion, whereas for the largest rings, which resemble flexible ones, it fails at high densities. Our work opens the way for the physical justification of general, anisotropic penetrable interaction potentials. American Chemical Society 2015-07-10 2015-07-28 /pmc/articles/PMC4519991/ /pubmed/26240439 http://dx.doi.org/10.1021/acs.macromol.5b00603 Text en Copyright © 2015 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Poier, Peter Likos, Christos N. Moreno, Angel J. Blaak, Ronald An Anisotropic Effective Model for the Simulation of Semiflexible Ring Polymers |
title | An Anisotropic Effective Model for the Simulation
of Semiflexible Ring Polymers |
title_full | An Anisotropic Effective Model for the Simulation
of Semiflexible Ring Polymers |
title_fullStr | An Anisotropic Effective Model for the Simulation
of Semiflexible Ring Polymers |
title_full_unstemmed | An Anisotropic Effective Model for the Simulation
of Semiflexible Ring Polymers |
title_short | An Anisotropic Effective Model for the Simulation
of Semiflexible Ring Polymers |
title_sort | anisotropic effective model for the simulation
of semiflexible ring polymers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519991/ https://www.ncbi.nlm.nih.gov/pubmed/26240439 http://dx.doi.org/10.1021/acs.macromol.5b00603 |
work_keys_str_mv | AT poierpeter ananisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers AT likoschristosn ananisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers AT morenoangelj ananisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers AT blaakronald ananisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers AT poierpeter anisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers AT likoschristosn anisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers AT morenoangelj anisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers AT blaakronald anisotropiceffectivemodelforthesimulationofsemiflexibleringpolymers |