Cargando…
Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models
Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous...
Autores principales: | Stein, Richard R., Marks, Debora S., Sander, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520494/ https://www.ncbi.nlm.nih.gov/pubmed/26225866 http://dx.doi.org/10.1371/journal.pcbi.1004182 |
Ejemplares similares
-
Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models
por: Rostami, Vahid, et al.
Publicado: (2017) -
Pairwise Maximum Entropy Models for Studying Large Biological
Systems: When They Can Work and When They Can't
por: Roudi, Yasser, et al.
Publicado: (2009) -
A pairwise maximum entropy model accurately describes resting-state human brain networks
por: Watanabe, Takamitsu, et al.
Publicado: (2013) -
An introduction to the maximum entropy approach and its application to inference problems in biology
por: De Martino, Andrea, et al.
Publicado: (2018) -
Model Fit after Pairwise Maximum Likelihood
por: Barendse, M. T., et al.
Publicado: (2016)