Cargando…
An Example-Based Multi-Atlas Approach to Automatic Labeling of White Matter Tracts
We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example data to automatically classify the WM tracts of a subject. Multiple atlases are constructed to model the example data from multiple subjects...
Autores principales: | Yoo, Sang Wook, Guevara, Pamela, Jeong, Yong, Yoo, Kwangsun, Shin, Joseph S., Mangin, Jean-Francois, Seong, Joon-Kyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520495/ https://www.ncbi.nlm.nih.gov/pubmed/26225419 http://dx.doi.org/10.1371/journal.pone.0133337 |
Ejemplares similares
-
Subject-Specific Automatic Reconstruction of White Matter Tracts
por: Meesters, Stephan, et al.
Publicado: (2023) -
Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data
por: Román, Claudio, et al.
Publicado: (2017) -
Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information
por: Vázquez, Andrea, et al.
Publicado: (2020) -
A comprehensive atlas of white matter tracts in the chimpanzee
por: Bryant, Katherine L., et al.
Publicado: (2020) -
Histology-informed automatic parcellation of white matter tracts in the rat spinal cord
por: Nami, Harris, et al.
Publicado: (2022)