Cargando…

The hepatocyte growth factor receptor as a potential therapeutic target for dedifferentiated liposarcoma

Dedifferentiated liposarcomas (DDLPS) are highly resistant to conventional chemo- and radiotherapies, with surgical resection remaining the classic treatment strategy; therefore there is a pressing need for novel anti-DDLPS targeted chemotherapeutics. Hepatocyte growth factor receptor (Met) expressi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bill, Kate Lynn J., Garnett, Jeannine, Ma, Xiaoyan, May, Caitlin, Bolshakov, Svetlana, Lazar, Alexander J., Lev, Dina, Pollock, Raphael E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520775/
https://www.ncbi.nlm.nih.gov/pubmed/26006023
http://dx.doi.org/10.1038/labinvest.2015.62
Descripción
Sumario:Dedifferentiated liposarcomas (DDLPS) are highly resistant to conventional chemo- and radiotherapies, with surgical resection remaining the classic treatment strategy; therefore there is a pressing need for novel anti-DDLPS targeted chemotherapeutics. Hepatocyte growth factor receptor (Met) expression is elevated in DDLPS, but the functional role of Met signaling in this disease is not known. We found that the in vitro stimulation of DDLPS cells with hepatocyte growth factor (HGF) elevated the degree of PI3K/AKT and MAPK pathway signaling, and that pro-tumorigenic phenotypes such as cell proliferation, invasion, and migration, were significantly enhanced. Conversely, Met knockdown using shRNA-mediated interference decreased HGF-induced Met signaling, the invasive and migratory nature of DDLPS cells in vitro, and the tumorigenicity of DDLPS cells in vivo. This data strongly supports the role for Met as a DDLPS therapeutic target. To that end, using EMD1214063, an ATP-competitive kinas inhibitor that targets Met more specifically than other kinases, inhibited Met-dependent signaling, reduced the oncogenecity of DDLPS cells in vitro, and significantly increased the survival of nude mice bearing subcutaneous DDLPS xenografts. These findings support further investigations of HGF-induced Met signaling inhibition in DDLPS, as a potential strategy to enhance clinical outcomes for this disease.