Cargando…
Rechargeable magnesium-ion battery based on a TiSe(2)-cathode with d-p orbital hybridized electronic structure
Rechargeable ion-batteries, in which ions such as Li(+) carry charges between electrodes, have been contributing to the improvement of power-source performance in a wide variety of mobile electronic devices. Among them, Mg-ion batteries are recently attracting attention due to possible low cost and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521182/ https://www.ncbi.nlm.nih.gov/pubmed/26228263 http://dx.doi.org/10.1038/srep12486 |
Sumario: | Rechargeable ion-batteries, in which ions such as Li(+) carry charges between electrodes, have been contributing to the improvement of power-source performance in a wide variety of mobile electronic devices. Among them, Mg-ion batteries are recently attracting attention due to possible low cost and safety, which are realized by abundant natural resources and stability of Mg in the atmosphere. However, only a few materials have been known to work as rechargeable cathodes for Mg-ion batteries, owing to strong electrostatic interaction between Mg(2+) and the host lattice. Here we demonstrate rechargeable performance of Mg-ion batteries at ambient temperature by selecting TiSe(2) as a model cathode by focusing on electronic structure. Charge delocalization of electrons in a metal-ligand unit through d-p orbital hybridization is suggested as a possible key factor to realize reversible intercalation of Mg(2+) into TiSe(2). The viewpoint from the electronic structure proposed in this study might pave a new way to design electrode materials for multivalent-ion batteries. |
---|