Cargando…

A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Jongmoon, Lee, JangWoo, Woo, Seongyong, Sly, David J., Campbell, Luke J., Cho, Jin-Ho, O’Leary, Stephen J., Park, Min-Hyun, Han, Sungmin, Choi, Ji-Wong, Hun Jang, Jeong, Choi, Hongsoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521187/
https://www.ncbi.nlm.nih.gov/pubmed/26227924
http://dx.doi.org/10.1038/srep12447
_version_ 1782383771520073728
author Jang, Jongmoon
Lee, JangWoo
Woo, Seongyong
Sly, David J.
Campbell, Luke J.
Cho, Jin-Ho
O’Leary, Stephen J.
Park, Min-Hyun
Han, Sungmin
Choi, Ji-Wong
Hun Jang, Jeong
Choi, Hongsoo
author_facet Jang, Jongmoon
Lee, JangWoo
Woo, Seongyong
Sly, David J.
Campbell, Luke J.
Cho, Jin-Ho
O’Leary, Stephen J.
Park, Min-Hyun
Han, Sungmin
Choi, Ji-Wong
Hun Jang, Jeong
Choi, Hongsoo
author_sort Jang, Jongmoon
collection PubMed
description We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92–12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs.
format Online
Article
Text
id pubmed-4521187
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-45211872015-08-05 A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model Jang, Jongmoon Lee, JangWoo Woo, Seongyong Sly, David J. Campbell, Luke J. Cho, Jin-Ho O’Leary, Stephen J. Park, Min-Hyun Han, Sungmin Choi, Ji-Wong Hun Jang, Jeong Choi, Hongsoo Sci Rep Article We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92–12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs. Nature Publishing Group 2015-07-31 /pmc/articles/PMC4521187/ /pubmed/26227924 http://dx.doi.org/10.1038/srep12447 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Jang, Jongmoon
Lee, JangWoo
Woo, Seongyong
Sly, David J.
Campbell, Luke J.
Cho, Jin-Ho
O’Leary, Stephen J.
Park, Min-Hyun
Han, Sungmin
Choi, Ji-Wong
Hun Jang, Jeong
Choi, Hongsoo
A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
title A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
title_full A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
title_fullStr A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
title_full_unstemmed A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
title_short A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
title_sort microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521187/
https://www.ncbi.nlm.nih.gov/pubmed/26227924
http://dx.doi.org/10.1038/srep12447
work_keys_str_mv AT jangjongmoon amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT leejangwoo amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT wooseongyong amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT slydavidj amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT campbelllukej amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT chojinho amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT olearystephenj amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT parkminhyun amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT hansungmin amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT choijiwong amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT hunjangjeong amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT choihongsoo amicroelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT jangjongmoon microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT leejangwoo microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT wooseongyong microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT slydavidj microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT campbelllukej microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT chojinho microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT olearystephenj microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT parkminhyun microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT hansungmin microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT choijiwong microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT hunjangjeong microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel
AT choihongsoo microelectromechanicalsystemartificialbasilarmembranebasedonapiezoelectriccantileverarrayanditscharacterizationusingananimalmodel