Cargando…

Transforming growth factor-β increases interleukin-13 synthesis via GATA-3 transcription factor in T-lymphocytes from patients with systemic sclerosis

INTRODUCTION: Transforming growth factor (TGF)-β and interleukin (IL)-13 play a crucial role in the pathogenesis of systemic sclerosis (SSc), partly through activation of collagen production that leads to fibrosis. The aim of the present study was to determine whether TFG-β alters IL-13 production i...

Descripción completa

Detalles Bibliográficos
Autores principales: Baraut, Julie, Farge, Dominique, Jean-Louis, Francette, Masse, Ingrid, Grigore, Elena Ivan, Arruda, Lucas C. M., Lamartine, Jérôme, Verrecchia, Franck, Michel, Laurence
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521372/
https://www.ncbi.nlm.nih.gov/pubmed/26227022
http://dx.doi.org/10.1186/s13075-015-0708-0
Descripción
Sumario:INTRODUCTION: Transforming growth factor (TGF)-β and interleukin (IL)-13 play a crucial role in the pathogenesis of systemic sclerosis (SSc), partly through activation of collagen production that leads to fibrosis. The aim of the present study was to determine whether TFG-β alters IL-13 production in T lymphocytes from patients with SSc from that seen in those of healthy donors. METHODS: IL-13 mRNA and protein synthesis under TFG-β exposure was measured in circulating T lymphocytes from healthy donors and patients with SSc and also in the Jurkat Th2 T-cell line, using quantitative real-time PCR and fluorescence-activated cell sorting analysis, respectively. The involvement of Smad and GATA-3 transcription factors was assessed by using specific inhibitors and small interfering RNA, and the binding capacity of GATA-3 to the IL-13 gene promoter was evaluated by chromatin immunoprecipitation assay. RESULTS: TGF-β induced a significant decrease in IL-13 mRNA and protein levels in lymphocytes from healthy donors (mean [±SD] inhibition of 30 % ± 10 % and 20 % ± 7 %, respectively; p < 0.05). In contrast, TGF-β promoted a significant increase in IL-13 mRNA levels and IL-13 synthesis by CD4(+) and CD8(+) T-cell subtypes from patients with SSc, with respective increases of 2.4 ± 0.3-fold, 1.6 ± 0.05-fold and 2.7 ± 0.02-fold. The involvement of the Smad signaling pathway and upregulation of GATA-3 binding capacity on the IL-13 promoter in lymphocytes from patients with SSc contributed to the effect of TGF-β on IL-13 production. CONCLUSIONS: These results demonstrate that TGF-β upregulates IL-13 synthesis through GATA-3 expression in the T lymphocytes of patients with SSc, confirming that the GATA-3 transcription factor can be regarded as a novel therapeutic target in patients with SSc.