Cargando…

JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade

Organogenesis is controlled by gene networks activated by upstream selector genes. During development the gene network is activated stepwise, with a sequential deployment of successive transcription factors and signalling molecules that modify the interaction of the elements of the network as the or...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinto, Pedro B., Espinosa-Vázquez, Jose Manuel, Rivas, María Luísa, Hombría, James Castelli-Gair
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521708/
https://www.ncbi.nlm.nih.gov/pubmed/26230388
http://dx.doi.org/10.1371/journal.pgen.1005412
_version_ 1782383846788956160
author Pinto, Pedro B.
Espinosa-Vázquez, Jose Manuel
Rivas, María Luísa
Hombría, James Castelli-Gair
author_facet Pinto, Pedro B.
Espinosa-Vázquez, Jose Manuel
Rivas, María Luísa
Hombría, James Castelli-Gair
author_sort Pinto, Pedro B.
collection PubMed
description Organogenesis is controlled by gene networks activated by upstream selector genes. During development the gene network is activated stepwise, with a sequential deployment of successive transcription factors and signalling molecules that modify the interaction of the elements of the network as the organ forms. Very little is known about the steps leading from the early specification of the cells that form the organ primordium to the moment when a robust gene network is in place. Here we study in detail how a Hox protein induces during early embryogenesis a simple organogenetic cascade that matures into a complex gene network through the activation of feedback and feed forward interaction loops. To address how the network organization changes during development and how the target genes integrate the genetic information it provides, we analyze in Drosophila the induction of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-B activates in the spiracle primordium a cascade of transcription factors and signalling molecules including the JAK/STAT signalling pathway. We find that at later stages STAT activity feeds back directly into Abd-B, initiating the transformation of the Hox cascade into a gene-network. Focusing on crumbs, a spiracle downstream target gene of Abd-B, we analyze how a modular cis regulatory element integrates the dynamic network information set by Abd-B and the JAK/STAT signalling pathway during development. We describe how a Hox induced genetic cascade transforms into a robust gene network during organogenesis due to the repeated interaction of Abd-B and one of its targets, the JAK/STAT signalling cascade. Our results show that in this network STAT functions not just as a direct transcription factor, but also acts as a "counter-repressor", uncovering a novel mode for STAT directed transcriptional regulation.
format Online
Article
Text
id pubmed-4521708
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45217082015-08-06 JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade Pinto, Pedro B. Espinosa-Vázquez, Jose Manuel Rivas, María Luísa Hombría, James Castelli-Gair PLoS Genet Research Article Organogenesis is controlled by gene networks activated by upstream selector genes. During development the gene network is activated stepwise, with a sequential deployment of successive transcription factors and signalling molecules that modify the interaction of the elements of the network as the organ forms. Very little is known about the steps leading from the early specification of the cells that form the organ primordium to the moment when a robust gene network is in place. Here we study in detail how a Hox protein induces during early embryogenesis a simple organogenetic cascade that matures into a complex gene network through the activation of feedback and feed forward interaction loops. To address how the network organization changes during development and how the target genes integrate the genetic information it provides, we analyze in Drosophila the induction of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-B activates in the spiracle primordium a cascade of transcription factors and signalling molecules including the JAK/STAT signalling pathway. We find that at later stages STAT activity feeds back directly into Abd-B, initiating the transformation of the Hox cascade into a gene-network. Focusing on crumbs, a spiracle downstream target gene of Abd-B, we analyze how a modular cis regulatory element integrates the dynamic network information set by Abd-B and the JAK/STAT signalling pathway during development. We describe how a Hox induced genetic cascade transforms into a robust gene network during organogenesis due to the repeated interaction of Abd-B and one of its targets, the JAK/STAT signalling cascade. Our results show that in this network STAT functions not just as a direct transcription factor, but also acts as a "counter-repressor", uncovering a novel mode for STAT directed transcriptional regulation. Public Library of Science 2015-07-31 /pmc/articles/PMC4521708/ /pubmed/26230388 http://dx.doi.org/10.1371/journal.pgen.1005412 Text en © 2015 Pinto et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Pinto, Pedro B.
Espinosa-Vázquez, Jose Manuel
Rivas, María Luísa
Hombría, James Castelli-Gair
JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade
title JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade
title_full JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade
title_fullStr JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade
title_full_unstemmed JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade
title_short JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade
title_sort jak/stat and hox dynamic interactions in an organogenetic gene cascade
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521708/
https://www.ncbi.nlm.nih.gov/pubmed/26230388
http://dx.doi.org/10.1371/journal.pgen.1005412
work_keys_str_mv AT pintopedrob jakstatandhoxdynamicinteractionsinanorganogeneticgenecascade
AT espinosavazquezjosemanuel jakstatandhoxdynamicinteractionsinanorganogeneticgenecascade
AT rivasmarialuisa jakstatandhoxdynamicinteractionsinanorganogeneticgenecascade
AT hombriajamescastelligair jakstatandhoxdynamicinteractionsinanorganogeneticgenecascade