Cargando…
A naturally-monomeric infrared fluorescent protein for protein labeling in vivo
Infrared fluorescent proteins (IFPs) provide an additional color to GFP and its red homologs in protein labeling. Based on structural analysis of the dimer interface, a monomeric bateriophytochrome is identified from a sequence database, and is engineered into a naturally-monomeric IFP (mIFP). We de...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521985/ https://www.ncbi.nlm.nih.gov/pubmed/26098020 http://dx.doi.org/10.1038/nmeth.3447 |
Sumario: | Infrared fluorescent proteins (IFPs) provide an additional color to GFP and its red homologs in protein labeling. Based on structural analysis of the dimer interface, a monomeric bateriophytochrome is identified from a sequence database, and is engineered into a naturally-monomeric IFP (mIFP). We demonstrate that mIFP correctly labels proteins in live Drosophila and zebrafish requiring no exogenous cofactor, and will thus be useful in molecular, cell and developmental biology. |
---|