Cargando…
Diagnostic biases in translational bioinformatics
BACKGROUND: With the surge of translational medicine and computational omics research, complex disease diagnosis is more and more relying on massive omics data-driven molecular signature detection. However, how to detect and prevent possible diagnostic biases in translational bioinformatics remains...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522082/ https://www.ncbi.nlm.nih.gov/pubmed/26232237 http://dx.doi.org/10.1186/s12920-015-0116-y |
_version_ | 1782383910298058752 |
---|---|
author | Han, Henry |
author_facet | Han, Henry |
author_sort | Han, Henry |
collection | PubMed |
description | BACKGROUND: With the surge of translational medicine and computational omics research, complex disease diagnosis is more and more relying on massive omics data-driven molecular signature detection. However, how to detect and prevent possible diagnostic biases in translational bioinformatics remains an unsolved problem despite its importance in the coming era of personalized medicine. METHODS: In this study, we comprehensively investigate the diagnostic bias problem by analyzing benchmark gene array, protein array, RNA-Seq and miRNA-Seq data under the framework of support vector machines for different model selection methods. We further categorize the diagnostic biases into different types by conducting rigorous kernel matrix analysis and provide effective machine learning methods to conquer the diagnostic biases. RESULTS: In this study, we comprehensively investigate the diagnostic bias problem by analyzing benchmark gene array, protein array, RNA-Seq and miRNA-Seq data under the framework of support vector machines. We have found that the diagnostic biases happen for data with different distributions and SVM with different kernels. Moreover, we identify total three types of diagnostic biases: overfitting bias, label skewness bias, and underfitting bias in SVM diagnostics, and present corresponding reasons through rigorous analysis. Compared with the overfitting and underfitting biases, the label skewness bias is more challenging to detect and conquer because it can be easily confused as a normal diagnostic case from its deceptive accuracy. To tackle this problem, we propose a derivative component analysis based support vector machines to conquer the label skewness bias by achieving the rivaling clinical diagnostic results. CONCLUSIONS: Our studies demonstrate that the diagnostic biases are mainly caused by the three major factors, i.e. kernel selection, signal amplification mechanism in high-throughput profiling, and training data label distribution. Moreover, the proposed DCA-SVM diagnosis provides a generic solution for the label skewness bias overcome due to the powerful feature extraction capability from derivative component analysis. Our work identifies and solves an important but less addressed problem in translational research. It also has a positive impact on machine learning for adding new results to kernel-based learning for omics data. |
format | Online Article Text |
id | pubmed-4522082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45220822015-08-02 Diagnostic biases in translational bioinformatics Han, Henry BMC Med Genomics Research Article BACKGROUND: With the surge of translational medicine and computational omics research, complex disease diagnosis is more and more relying on massive omics data-driven molecular signature detection. However, how to detect and prevent possible diagnostic biases in translational bioinformatics remains an unsolved problem despite its importance in the coming era of personalized medicine. METHODS: In this study, we comprehensively investigate the diagnostic bias problem by analyzing benchmark gene array, protein array, RNA-Seq and miRNA-Seq data under the framework of support vector machines for different model selection methods. We further categorize the diagnostic biases into different types by conducting rigorous kernel matrix analysis and provide effective machine learning methods to conquer the diagnostic biases. RESULTS: In this study, we comprehensively investigate the diagnostic bias problem by analyzing benchmark gene array, protein array, RNA-Seq and miRNA-Seq data under the framework of support vector machines. We have found that the diagnostic biases happen for data with different distributions and SVM with different kernels. Moreover, we identify total three types of diagnostic biases: overfitting bias, label skewness bias, and underfitting bias in SVM diagnostics, and present corresponding reasons through rigorous analysis. Compared with the overfitting and underfitting biases, the label skewness bias is more challenging to detect and conquer because it can be easily confused as a normal diagnostic case from its deceptive accuracy. To tackle this problem, we propose a derivative component analysis based support vector machines to conquer the label skewness bias by achieving the rivaling clinical diagnostic results. CONCLUSIONS: Our studies demonstrate that the diagnostic biases are mainly caused by the three major factors, i.e. kernel selection, signal amplification mechanism in high-throughput profiling, and training data label distribution. Moreover, the proposed DCA-SVM diagnosis provides a generic solution for the label skewness bias overcome due to the powerful feature extraction capability from derivative component analysis. Our work identifies and solves an important but less addressed problem in translational research. It also has a positive impact on machine learning for adding new results to kernel-based learning for omics data. BioMed Central 2015-08-01 /pmc/articles/PMC4522082/ /pubmed/26232237 http://dx.doi.org/10.1186/s12920-015-0116-y Text en © Han. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Han, Henry Diagnostic biases in translational bioinformatics |
title | Diagnostic biases in translational bioinformatics |
title_full | Diagnostic biases in translational bioinformatics |
title_fullStr | Diagnostic biases in translational bioinformatics |
title_full_unstemmed | Diagnostic biases in translational bioinformatics |
title_short | Diagnostic biases in translational bioinformatics |
title_sort | diagnostic biases in translational bioinformatics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522082/ https://www.ncbi.nlm.nih.gov/pubmed/26232237 http://dx.doi.org/10.1186/s12920-015-0116-y |
work_keys_str_mv | AT hanhenry diagnosticbiasesintranslationalbioinformatics |