Cargando…

STatistically Assigned Response Criteria in Solid Tumors (STARCIST)

BACKGROUND: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1–3 days while, in contrast, response assessments based on FDG-PET in early phase drug trials...

Descripción completa

Detalles Bibliográficos
Autores principales: Bengtsson, Thomas, Sanabria-Bohorquez, Sandra M., McCarthy, Timothy J., Binns, David S., Hicks, Rodney J., de Crespigny, Alex J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522098/
https://www.ncbi.nlm.nih.gov/pubmed/26231380
http://dx.doi.org/10.1186/s40644-015-0042-4
_version_ 1782383913903063040
author Bengtsson, Thomas
Sanabria-Bohorquez, Sandra M.
McCarthy, Timothy J.
Binns, David S.
Hicks, Rodney J.
de Crespigny, Alex J.
author_facet Bengtsson, Thomas
Sanabria-Bohorquez, Sandra M.
McCarthy, Timothy J.
Binns, David S.
Hicks, Rodney J.
de Crespigny, Alex J.
author_sort Bengtsson, Thomas
collection PubMed
description BACKGROUND: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1–3 days while, in contrast, response assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2–3 weeks during the first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained by random variability. Our method takes into account the statistical nature of natural fluctuations in SUV as well as potential bias effects. METHODS: To assess variability in SUV over clinically relevant scan intervals for clinical trials, we analyzed baseline and follow-up FDG-PET scans with a median scan interval of 21 days from 53 advanced stage cancer patients enrolled in a Phase 1 trial. The 53 patients received a sub-pharmacologic drug dose and the trial data is treated as a ’test-retest’ data set. A simulation-based tool is presented which takes as input baseline lesion SUVmax values, the variance of spurious changes in SUVmax between scans, the desired Type I error rate, and outputs lesion and patient based cut-off values. Bias corrections are included to account for variations in tracer uptake time. RESULTS: In the training data, changes in SUVmax follow an approximately zero-mean Gaussian distribution with constant variance across levels of the baseline measurements. Because of constant variance, the coefficient of variation is a decreasing function of the magnitude of baseline SUVmax. This finding is consistent with published results, but our data shows greater variability. Application of our method to NSCLC patients treated with erlotinib produces results distinct from those based on the EORTC criteria. Based on data presented here as well as previous repeatability studies, the proposed method has greater statistical power to detect a significant %-decrease on SUVmax compared to published criteria relying on symmetric thresholds. CONCLUSIONS: Defining patient-specific, baseline dependent cut-off values based on the (null) distribution of naturally occurring fluctuations in glucose uptake enable identification of statistically significant changes in SUVmax. For lower baseline values, the produced cutoff values are notably asymmetric with relatively large changes (e.g. >50 %) required for statistical significance. For use with prospectively defined endpoints, the developed method enables the use of one-armed trials to detect pharmacodynamic drug effects based on FDG-PET. The clinical importance of changes in SUVmax is likely to remain dependent on both tumor biology and the type of treatment.
format Online
Article
Text
id pubmed-4522098
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-45220982015-08-02 STatistically Assigned Response Criteria in Solid Tumors (STARCIST) Bengtsson, Thomas Sanabria-Bohorquez, Sandra M. McCarthy, Timothy J. Binns, David S. Hicks, Rodney J. de Crespigny, Alex J. Cancer Imaging Research Article BACKGROUND: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1–3 days while, in contrast, response assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2–3 weeks during the first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained by random variability. Our method takes into account the statistical nature of natural fluctuations in SUV as well as potential bias effects. METHODS: To assess variability in SUV over clinically relevant scan intervals for clinical trials, we analyzed baseline and follow-up FDG-PET scans with a median scan interval of 21 days from 53 advanced stage cancer patients enrolled in a Phase 1 trial. The 53 patients received a sub-pharmacologic drug dose and the trial data is treated as a ’test-retest’ data set. A simulation-based tool is presented which takes as input baseline lesion SUVmax values, the variance of spurious changes in SUVmax between scans, the desired Type I error rate, and outputs lesion and patient based cut-off values. Bias corrections are included to account for variations in tracer uptake time. RESULTS: In the training data, changes in SUVmax follow an approximately zero-mean Gaussian distribution with constant variance across levels of the baseline measurements. Because of constant variance, the coefficient of variation is a decreasing function of the magnitude of baseline SUVmax. This finding is consistent with published results, but our data shows greater variability. Application of our method to NSCLC patients treated with erlotinib produces results distinct from those based on the EORTC criteria. Based on data presented here as well as previous repeatability studies, the proposed method has greater statistical power to detect a significant %-decrease on SUVmax compared to published criteria relying on symmetric thresholds. CONCLUSIONS: Defining patient-specific, baseline dependent cut-off values based on the (null) distribution of naturally occurring fluctuations in glucose uptake enable identification of statistically significant changes in SUVmax. For lower baseline values, the produced cutoff values are notably asymmetric with relatively large changes (e.g. >50 %) required for statistical significance. For use with prospectively defined endpoints, the developed method enables the use of one-armed trials to detect pharmacodynamic drug effects based on FDG-PET. The clinical importance of changes in SUVmax is likely to remain dependent on both tumor biology and the type of treatment. BioMed Central 2015-07-31 /pmc/articles/PMC4522098/ /pubmed/26231380 http://dx.doi.org/10.1186/s40644-015-0042-4 Text en © Bengtsson et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Bengtsson, Thomas
Sanabria-Bohorquez, Sandra M.
McCarthy, Timothy J.
Binns, David S.
Hicks, Rodney J.
de Crespigny, Alex J.
STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
title STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
title_full STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
title_fullStr STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
title_full_unstemmed STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
title_short STatistically Assigned Response Criteria in Solid Tumors (STARCIST)
title_sort statistically assigned response criteria in solid tumors (starcist)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522098/
https://www.ncbi.nlm.nih.gov/pubmed/26231380
http://dx.doi.org/10.1186/s40644-015-0042-4
work_keys_str_mv AT bengtssonthomas statisticallyassignedresponsecriteriainsolidtumorsstarcist
AT sanabriabohorquezsandram statisticallyassignedresponsecriteriainsolidtumorsstarcist
AT mccarthytimothyj statisticallyassignedresponsecriteriainsolidtumorsstarcist
AT binnsdavids statisticallyassignedresponsecriteriainsolidtumorsstarcist
AT hicksrodneyj statisticallyassignedresponsecriteriainsolidtumorsstarcist
AT decrespignyalexj statisticallyassignedresponsecriteriainsolidtumorsstarcist