Cargando…
The cytohesin guanosine exchange factors (GEFs) are required to promote HGF-mediated renal recovery after acute kidney injury (AKI) in mice
The lack of current treatment and preventable measures for acute kidney injury (AKI) in hospitalized patients results in an increased mortality rate of up to 80% and elevated health costs. Additionally, if not properly repaired, those who survive AKI may develop fibrosis and long-term kidney damage....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522160/ https://www.ncbi.nlm.nih.gov/pubmed/26116550 http://dx.doi.org/10.14814/phy2.12442 |
Sumario: | The lack of current treatment and preventable measures for acute kidney injury (AKI) in hospitalized patients results in an increased mortality rate of up to 80% and elevated health costs. Additionally, if not properly repaired, those who survive AKI may develop fibrosis and long-term kidney damage. The molecular aspects of kidney injury and repair are still uncertain. Hepatocyte growth factor (HGF) promotes recovery of the injured kidney by inducing survival and migration of tubular epithelial cells to repopulate bare tubule areas. HGF-stimulated kidney epithelial cell migration requires the activation of ADP-ribosylation factor 6 (Arf6) and Rac1 via the cytohesin family of Arf-guanine-nucleotide exchange factors (GEFs), in vitro. We used an ischemia and reperfusion injury (IRI) mouse model to analyze the effects of modulating this signaling pathway on kidney recovery. We treated IRI mice with either HGF, the cytohesin inhibitor SecinH3, or a combination of both. As previously reported, HGF treatment promoted rapid improvement of kidney function as evidenced by creatinine (Cre) and blood urea nitrogen (BUN) levels. In contrast, simultaneous treatment with SecinH3 and HGF blocks the ability of HGF to promote kidney recovery. Immunohistochemistry showed that HGF treatment promoted recovery of tubule structure, and had enhanced levels of active, GTP-bound Arf6 and GTP-Rac1. SecinH3 treatment, however, caused a dramatic decrease in GTP-Arf6 and GTP-Rac1 levels when compared to kidney sections from HGF-treated IRI mice. Additionally, SecinH3 counteracted the renal reparative effects of HGF. Our results support the conclusion that cytohesin function is required for HGF-stimulated renal IRI repair. |
---|