Cargando…
Unsupervised learning of digit recognition using spike-timing-dependent plasticity
In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functionin...
Autores principales: | Diehl, Peter U., Cook, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522567/ https://www.ncbi.nlm.nih.gov/pubmed/26941637 http://dx.doi.org/10.3389/fncom.2015.00099 |
Ejemplares similares
-
Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses
por: Ambrogio, Stefano, et al.
Publicado: (2016) -
Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity
por: Masquelier, Timothée, et al.
Publicado: (2007) -
Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network
por: Dong, Meng, et al.
Publicado: (2018) -
Modeling the interplay between structural plasticity and spike-timing-dependent plasticity
por: George, Richard M, et al.
Publicado: (2015) -
Information-Theoretic Intrinsic Plasticity for Online Unsupervised Learning in Spiking Neural Networks
por: Zhang, Wenrui, et al.
Publicado: (2019)