Cargando…
Discovering Multi-Scale Co-Occurrence Patterns of Asthma and Influenza with Oak Ridge Bio-Surveillance Toolkit
We describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season a...
Autores principales: | Ramanathan, Arvind, Pullum, Laura L., Hobson, Tanner C., Stahl, Christopher G., Steed, Chad A., Quinn, Shannon P., Chennubhotla, Chakra S., Valkova, Silvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522606/ https://www.ncbi.nlm.nih.gov/pubmed/26284230 http://dx.doi.org/10.3389/fpubh.2015.00182 |
Ejemplares similares
-
ORBiT: Oak Ridge biosurveillance toolkit for public health dynamics
por: Ramanathan, Arvind, et al.
Publicado: (2015) -
ORBiT – The Oak Ridge Biosurveillance Toolkit
por: Pullum, Laura, et al.
Publicado: (2014) -
Discovering Conformational Sub-States Relevant to Protein Function
por: Ramanathan, Arvind, et al.
Publicado: (2011) -
Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization
por: Castro, Jason B., et al.
Publicado: (2013) -
Oak Ridge: Heavy Ion Laboratory
Publicado: (1976)