Cargando…

A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells

A computer-designed, solvent-free scaffold offer several potential advantages such as ease of customized manufacture and in vivo safety. In this work, we firstly used a computer-designed, solvent-free scaffold and human dental pulp stem cells (hDPSCs) to regenerate neo-bone within cranial bone defec...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeon Kwon, Doo, Seon Kwon, Jin, Hun Park, Seung, Hun Park, Ji, Hee Jang, So, Yun Yin, Xiang, Yun, Jeong-Ho, Ho Kim, Jae, Hyun Min, Byoung, Hee Lee, Jun, Kim, Wan-Doo, Suk Kim, Moon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522608/
https://www.ncbi.nlm.nih.gov/pubmed/26234712
http://dx.doi.org/10.1038/srep12721
Descripción
Sumario:A computer-designed, solvent-free scaffold offer several potential advantages such as ease of customized manufacture and in vivo safety. In this work, we firstly used a computer-designed, solvent-free scaffold and human dental pulp stem cells (hDPSCs) to regenerate neo-bone within cranial bone defects. The hDPSCs expressed mesenchymal stem cell markers and served as an abundant source of stem cells with a high proliferation rate. In addition, hDPSCs showed a phenotype of differentiated osteoblasts in the presence of osteogenic factors (OF). We used solid freeform fabrication (SFF) with biodegradable polyesters (MPEG-(PLLA-co-PGA-co-PCL) (PLGC)) to fabricate a computer-designed scaffold. The SFF technology gave quick and reproducible results. To assess bone tissue engineering in vivo, the computer-designed, circular PLGC scaffold was implanted into a full-thickness cranial bone defect and monitored by micro-computed tomography (CT) and histology of the in vivo tissue-engineered bone. Neo-bone formation of more than 50% in both micro-CT and histology tests was observed at only PLGC scaffold with hDPSCs/OF. Furthermore, the PLGC scaffold gradually degraded, as evidenced by the fluorescent-labeled PLGC scaffold, which provides information to tract biodegradation of implanted PLGC scaffold. In conclusion, we confirmed neo-bone formation within a cranial bone defect using hDPSCs and a computer-designed PLGC scaffold.