Cargando…

Integrated inference and evaluation of host–fungi interaction networks

Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune resp...

Descripción completa

Detalles Bibliográficos
Autores principales: Remmele, Christian W., Luther, Christian H., Balkenhol, Johannes, Dandekar, Thomas, Müller, Tobias, Dittrich, Marcus T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523839/
https://www.ncbi.nlm.nih.gov/pubmed/26300851
http://dx.doi.org/10.3389/fmicb.2015.00764
_version_ 1782384122128236544
author Remmele, Christian W.
Luther, Christian H.
Balkenhol, Johannes
Dandekar, Thomas
Müller, Tobias
Dittrich, Marcus T.
author_facet Remmele, Christian W.
Luther, Christian H.
Balkenhol, Johannes
Dandekar, Thomas
Müller, Tobias
Dittrich, Marcus T.
author_sort Remmele, Christian W.
collection PubMed
description Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data.
format Online
Article
Text
id pubmed-4523839
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-45238392015-08-21 Integrated inference and evaluation of host–fungi interaction networks Remmele, Christian W. Luther, Christian H. Balkenhol, Johannes Dandekar, Thomas Müller, Tobias Dittrich, Marcus T. Front Microbiol Microbiology Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. Frontiers Media S.A. 2015-08-04 /pmc/articles/PMC4523839/ /pubmed/26300851 http://dx.doi.org/10.3389/fmicb.2015.00764 Text en Copyright © 2015 Remmele, Luther, Balkenhol, Dandekar, Müller and Dittrich. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Remmele, Christian W.
Luther, Christian H.
Balkenhol, Johannes
Dandekar, Thomas
Müller, Tobias
Dittrich, Marcus T.
Integrated inference and evaluation of host–fungi interaction networks
title Integrated inference and evaluation of host–fungi interaction networks
title_full Integrated inference and evaluation of host–fungi interaction networks
title_fullStr Integrated inference and evaluation of host–fungi interaction networks
title_full_unstemmed Integrated inference and evaluation of host–fungi interaction networks
title_short Integrated inference and evaluation of host–fungi interaction networks
title_sort integrated inference and evaluation of host–fungi interaction networks
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523839/
https://www.ncbi.nlm.nih.gov/pubmed/26300851
http://dx.doi.org/10.3389/fmicb.2015.00764
work_keys_str_mv AT remmelechristianw integratedinferenceandevaluationofhostfungiinteractionnetworks
AT lutherchristianh integratedinferenceandevaluationofhostfungiinteractionnetworks
AT balkenholjohannes integratedinferenceandevaluationofhostfungiinteractionnetworks
AT dandekarthomas integratedinferenceandevaluationofhostfungiinteractionnetworks
AT mullertobias integratedinferenceandevaluationofhostfungiinteractionnetworks
AT dittrichmarcust integratedinferenceandevaluationofhostfungiinteractionnetworks