Cargando…
Memristive crypto primitive for building highly secure physical unclonable functions
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523939/ https://www.ncbi.nlm.nih.gov/pubmed/26239669 http://dx.doi.org/10.1038/srep12785 |
_version_ | 1782384139638407168 |
---|---|
author | Gao, Yansong Ranasinghe, Damith C. Al-Sarawi, Said F. Kavehei, Omid Abbott, Derek |
author_facet | Gao, Yansong Ranasinghe, Damith C. Al-Sarawi, Said F. Kavehei, Omid Abbott, Derek |
author_sort | Gao, Yansong |
collection | PubMed |
description | Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of devices and the extraction of secret keys. Most PUF designs focus on exploiting process variations in Complementary Metal Oxide Semiconductor (CMOS) technology. In recent years, progress in nanoelectronic devices such as memristors has demonstrated the prevalence of process variations in scaling electronics down to the nano region. In this paper, we exploit the extremely large information density available in nanocrossbar architectures and the significant resistance variations of memristors to develop an on-chip memristive device based strong PUF (mrSPUF). Our novel architecture demonstrates desirable characteristics of PUFs, including uniqueness, reliability, and large number of challenge-response pairs (CRPs) and desirable characteristics of strong PUFs. More significantly, in contrast to most existing PUFs, our PUF can act as a reconfigurable PUF (rPUF) without additional hardware and is of benefit to applications needing revocation or update of secure key information. |
format | Online Article Text |
id | pubmed-4523939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45239392015-08-05 Memristive crypto primitive for building highly secure physical unclonable functions Gao, Yansong Ranasinghe, Damith C. Al-Sarawi, Said F. Kavehei, Omid Abbott, Derek Sci Rep Article Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of devices and the extraction of secret keys. Most PUF designs focus on exploiting process variations in Complementary Metal Oxide Semiconductor (CMOS) technology. In recent years, progress in nanoelectronic devices such as memristors has demonstrated the prevalence of process variations in scaling electronics down to the nano region. In this paper, we exploit the extremely large information density available in nanocrossbar architectures and the significant resistance variations of memristors to develop an on-chip memristive device based strong PUF (mrSPUF). Our novel architecture demonstrates desirable characteristics of PUFs, including uniqueness, reliability, and large number of challenge-response pairs (CRPs) and desirable characteristics of strong PUFs. More significantly, in contrast to most existing PUFs, our PUF can act as a reconfigurable PUF (rPUF) without additional hardware and is of benefit to applications needing revocation or update of secure key information. Nature Publishing Group 2015-08-04 /pmc/articles/PMC4523939/ /pubmed/26239669 http://dx.doi.org/10.1038/srep12785 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Gao, Yansong Ranasinghe, Damith C. Al-Sarawi, Said F. Kavehei, Omid Abbott, Derek Memristive crypto primitive for building highly secure physical unclonable functions |
title | Memristive crypto primitive for building highly secure physical unclonable functions |
title_full | Memristive crypto primitive for building highly secure physical unclonable functions |
title_fullStr | Memristive crypto primitive for building highly secure physical unclonable functions |
title_full_unstemmed | Memristive crypto primitive for building highly secure physical unclonable functions |
title_short | Memristive crypto primitive for building highly secure physical unclonable functions |
title_sort | memristive crypto primitive for building highly secure physical unclonable functions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523939/ https://www.ncbi.nlm.nih.gov/pubmed/26239669 http://dx.doi.org/10.1038/srep12785 |
work_keys_str_mv | AT gaoyansong memristivecryptoprimitiveforbuildinghighlysecurephysicalunclonablefunctions AT ranasinghedamithc memristivecryptoprimitiveforbuildinghighlysecurephysicalunclonablefunctions AT alsarawisaidf memristivecryptoprimitiveforbuildinghighlysecurephysicalunclonablefunctions AT kaveheiomid memristivecryptoprimitiveforbuildinghighlysecurephysicalunclonablefunctions AT abbottderek memristivecryptoprimitiveforbuildinghighlysecurephysicalunclonablefunctions |